165
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Workflow for hydrologic modelling with sUAS-acquired aerial imagery

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1346-1364 | Received 06 Dec 2018, Accepted 11 Jul 2019, Published online: 06 Aug 2019

References

  • Achleitner S, Rauch W. 2007. Increase of river base flow by hydropower gate operation for mitigation of CSO impacts – potential and limitations. Water Resour Manage. 21(9):1487–1503.
  • Allmaras RR, Burwell RE, Larson WE, Holt RF, Nelson WW. 1966. Total porosity and random roughness of the interrow zone as influenced by tillage. In: USDA conservation, Research Report no. 7. USDA, editor. Washington, D.C.: U.S. Government Printing Office; p. 1–22.
  • ASPRS Accuracy Standards for Digital Geospatial Data 2013. [place unknown]: American Society for Photogrammetry and Remote Sensing (ASPRS).
  • Auer I, Böhm R, Hofstätter M, Türk K, Kottek M. 2011. Long-term climate of Carinthia: Historical climate trends, future scenarios and climate change indices for the province of Carinthia. Vienna: ZAMG. p. 39.
  • Blaes X, Defourny P. 2008. Characterizing bidimensional roughness of agricultural soil surfaces for SAR modelling. IEEE Trans Geosci Remote Sensing. 46(12):4050–4061.
  • Boiffin J. 1984. La dégradation structurale des couches superficielles du sol sous l'action des pluies. Thèse de Docteur-Ingénieur, Inst. Natl. Agr., Paris.
  • Bonacci O, Oskoruš D. 2010. The changes in the lower Drava River water level, discharge and suspended sediment regime. Environ Earth Sci. 59(8):1661–1670.
  • Chow VT. 1959. Open-channel hydraulics. New York: McGraw-Hill; p. 680.
  • Clark MP, Bierkens MFP, Samaniego L, Woods RA, Uijlenhoet R, Bennett KE, Pauwels VRN, Cai X, Wood AW, Peters-Lidard CD. 2017. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism. Hydrol Earth Syst Sci. 21(7):3427–3440.
  • Freeman GE, Rahmeyer WJ, Copeland RR. 2000. Determination of flow resistance coefficients due to shrubs and woody vegetation. In: Vicksburg MS, editor. ERDC/CHL-CHETN-VII-3. USACE.: U.S. Army Engineer Research and Development Center.
  • Currence H, Lovely W. 1970. The analysis of soil surface roughness. Trans ASAE. 13:710–714.
  • Davidson MWJ, Toan TL, Mattia F, Satalino G, Manninen T, Borgeaud M. 2000. On the characterization of agricultural soil roughness for radar remote sensing studies. IEEE Trans Geosci Remote Sens. 38(2):630–640.
  • De Roos S, Turner D, Lucieer A, Bowman D. 2018. Using digital surface models from UAS imagery of fire damaged sphagnum peatlands for monitoring and hydrological restoration. Drones. 2(4):45.
  • Dorn H, Vetter M, Höfle B. 2014. GIS-based roughness derivation for flood simulations: a comparison of orthophotos, LiDAR and crowdsourced geodata. Remote Sens. 6(2):1739–1759.
  • Drava River Floods Hundreds of Homes 2012. The Slovenian Times. http://www.sloveniatimes.com/drava-river-floods-hundreds-of-homes.
  • EC. 2011. LIFE Project ‘Lebensader Obere Drau’. Final Report. Brussels: European Commission; 120 pp.
  • Govers G, Takken I, Helming K. 2000. Soil roughness and overland flow. Agronomie. 20(2):131–146.
  • Jenness J. 2013. Topographic Position Index (tpi_jen.avx) extension for ArcView 3.x, v. 1.2. Jenness Enterprises. Available at: http://www.jennessent.com/arcview/tpi.htm.
  • Kamphorst EC, Jetten V, GuéRif J, PitkäNen J, Iversen BV, Douglas JT, Paz A. 2000. Predicting depressional storage from soil surface roughness. Soil Sci Soc Am J. 64(5):1749–1758.
  • Koutalakis P, Tzoraki O, Zaimes G. 2019. UAVs for hydrologic scopes: application of a low-cost UAV to estimate surface water velocity by using three different image-based methods. Drones. 3(1):14.
  • Langhammer J, Bernsteinová J, Miřijovský J. 2017. Building a high-precision 2D hydrodynamic flood model using UAV photogrammetry and sensor network monitoring. Water. 9(11):861–822.
  • Lewis QW, Lindroth EM, Rhoads BL. 2018. Integrating unmanned aerial systems and LSPIV for rapid, cost-effective stream gauging. J Hydrol. 560:230–246.
  • Marzahn P, Ludwig R. 2009. On the derivation of soil surface roughness from multi parametric PolSAR data and its potential for hydrological modelling. Hydrol Earth Syst Sci. 13(3):381–394.
  • Marzahn P, Rieke-Zapp D, Ludwig R. 2012. Assessment of soil surface roughness statistics for microwave remote sensing applications using a simple photogrammetric acquisition system. ISPRS J Photogramm Remote Sens. 72:80–89.
  • Niedzielski T, Witek M, Spallek W. 2016. Observing river stages using unmanned aerial vehicles. Hydrol Earth Syst Sci. 20(8):3193–3205.
  • Robert B, Senay M, Plamondon MP, Sabourin J. 2003. Characterization and ranking of links connecting life support networks. Public Safety and Emergency Preparedness Canada, editor. Ottawa, ON: Her Majesty the Queen in Right of Canada; p. 74.
  • Taconet O, Ciarletti V. 2007. Estimating soil roughness indices on a ridge-and-furrow surface using stereo photogrammetry. Soil Till Res. 93(1):64–76.
  • Tokarczyk P, Leitao JP, Rieckermann J, Schindler K, Blumensaat F. 2015. High-quality observation of surface imperviousness for urban runoff modelling using UAV imagery. Hydrol Earth Syst Sci. 19(10):4215–4228.
  • Toutin T. 2004. Review article: geometric processing of remote sensing images: models, algorithms and methods. Int J Remote Sens. 25(10):1893–1924.
  • Verhoest N, Lievens H, Wagner W, Álvarez-Mozos J, Moran M, Mattia F. 2008. On the soil roughness parameterization problem in soil moisture retrieval of bare surfaces from synthetic aperture radar. Sensors. 8(7):4213–4248.
  • Vivoni ER, Rango A, Anderson CA, Pierini NA, Schreiner-McGraw AP, Saripalli S, Laliberte AS. 2014. Ecohydrology with unmanned aerial vehicles. Ecosphere. 5(10):art130–114.
  • Webster R, Oliver M. 2007. Geostatistics for environmental scientists. Cornwall: Wiley. (Statistics in Practice).
  • Ye A, Zhou Z, You J, Ma F, Duan Q. 2018. Dynamic Manning’s roughness coefficients for hydrological modelling in basins. Hydrology Research [Internet]. [cited 2019 May 13]; In press. Available from: https://iwaponline-com.libproxy.unm.edu/hr/article-abstract/49/5/1379/38878
  • Zhang S, Liu Y. 2017. Experimental study on anisotropic attributes of surface roughness watersheds. J Hydrol Eng. 22(11):06017005–06017006.
  • Zhang S, Liu Y, Zhang J, Liu Y, Wang Z. 2018. Theory and preliminary experimental verification of the directional difference of overland flow resistance in distributed hydrological models. Water Science & Technology: Water Supply. 18(6):2142–2150.
  • Zhang S, Liu Y, Li M, Liang B. 2016. Distributed hydrological models for addressing effects of spatial variability of roughness on overland flow. Water Sci Eng. 9(3):249–255.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.