412
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Surface modelling of forest aboveground biomass based on remote sensing and forest inventory data

, , , , , & show all
Pages 1549-1564 | Received 27 Apr 2019, Accepted 22 Jul 2019, Published online: 28 Aug 2019

References

  • Abshire JB, Sun X, Riris H, Sirota JM, Mcgarry JF, Palm S, Yi D, Liiva P. 2003. Geoscience Laser Altimeter System (GLAS) on the ICESat mission: on‐orbit measurement performance. Geophys Res Lett. 32(21):3.
  • Barra M, Petitgas P, Bonanno A, Somarakis S, Woillez M, Machias A, Mazzola S, Basilone G, Giannoulaki M. 2015. Interannual changes in biomass affect the spatial aggregations of anchovy and sardine as evidenced by geostatistical and spatial indicators. PLoS One. 10(8):e0135808.
  • Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Arain MA, Baldocchi D, Bonan GB, et al. 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329(5993):834–838.
  • Bourgoin C, Blanc L, Bailly J-S, Cornu G, Berenguer E, Oszwald J, Tritsch I, Laurent F, Hasan A, Sist P. 2018. The potential of multisource remote sensing for mapping the biomass of a degraded Amazonian forest. Forests 9(6):303.
  • Brovkin V, Van Bodegom PM, Kleinen T, Wirth C, Cornwell WK, Cornelissen JHC, Kattge J. 2012. Plant-driven variation in decomposition rates improves projections of global litter stock distribution. Biogeosciences 9(1):565–576.
  • Chen Q, Vaglio Laurin G, Valentini R. 2016. Uncertainty of remotely sensed aboveground biomass over an African tropical forest: propagating errors from trees to plots to pixels. Remote Sens Environ. 160:134–143.
  • Chi H, Sun G, Huang J, Guo Z, Ni W, Fu A. 2015. National forest aboveground biomass mapping from ICESat/GLAS Data and MODIS imagery in China. Remote Sens. 7(5):5534–5564.
  • Cutler MEJ, Boyd DS, Foody GM, Vetrivel A. 2012. Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: an assessment of predictions between regions. ISPRS J Photogramm Remote Sens. 70(3):66–77.
  • Department of Forest Resources Management of National Forestry Bureau (DFRMNFB). 2010. Forest Resources Statistics of China. Beijing: Department of Forest Resources Management of National Forestry Bureau. (in Chinese)
  • Fassnacht FE, Hartig F, Latifi H, Berger C, Hernández J, Corvalán P, Koch B. 2014. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens Environ. 154:102–114.
  • Feng Y, Lu D, Chen Q, Keller M, Moran E, dos-Santos MN, Bolfe EL, Batistella M. 2017. Examining effective use of data sources and modeling algorithms for improving biomass estimation in a moist tropical forest of the Brazilian Amazon. Int J Digit Earth. 10(10):996.
  • Gao Y, Lu D, Li G, Wang G, Chen Q, Liu L, Li D. 2018. Comparative analysis of modeling algorithms for forest aboveground biomass estimation in a subtropical region. Remote Sens. 10(4):627.
  • Gasparri NI, Parmuchi MG, Bono J, Karszenbaum H, Montenegro CL. 2010. Assessing multi-temporal Landsat 7 ETM + images for estimating above-ground biomass in subtropical dry forests of Argentina. J Arid Environ. 74(10):1262–1270.
  • Gitelson AA. 2004. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J Plant Physiol. 161(2):165–173.
  • Gleason CJ, Im J. 2012. Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sens Environ. 125:80–91.
  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, et al. 2013. High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853.,
  • Hengl T, Heuvelink GBM, Rossiter DG. 2007. About regression-kriging: from equations to case studies. Comput Geosci. 33(10):1301–1315.
  • Hengl T, Heuvelink GBM, Stein A. 2004. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma 120(1–2):75–93.
  • Hu T, Su Y, Xue B, Liu J, Zhao X, Fang J, Guo Q. 2016. Mapping global forest aboveground biomass with spaceborne LiDAR, optical imagery, and forest inventory data. Remote Sens. 8(7):565.
  • Huang H, Liu C, Wang X, Zhou X, Gong P. 2019. Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China. Remote Sens Environ. 221:225–234.
  • Ingram JC, Dawson TP, Whittaker RJ. 2005. Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks. Remote Sens Environ. 94(4):491–507.
  • Jeffers ES, Bonsall MB, Froyd CA, Brooks SJ, Willis KJ. 2015. The relative importance of biotic and abiotic processes for structuring plant communities through time. J Ecol. 103(2):459–472.
  • Ji J, Huang M, Li K. 2008. Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century. Sci China Ser D-Earth Sci. 51(6):885–898.
  • Kelley DI, Prentice IC, Harrison SP, Wang H, Simard M, Fisher JB, Willis KO. 2013. A comprehensive benchmarking system for evaluating global vegetation models. Biogeosciences 10(5):3313–3340.
  • Lefsky MA. 2010. A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system. Geophys Res Lett. 37(15):n/a.
  • Liao K, Qi S, Wang C, Wang D. 2018. Estimation of forest aboveground biomass and canopy height in Jiangxi province using GLAS and Landsat TM images. Remote Sens Technol Appl. 33(4):713–720.
  • Liu K, Wang J, Zeng W, Song J. 2017. Comparison and evaluation of three methods for estimating forest above ground biomass using TM and GLAS data. Remote Sens. 9(4):341.
  • Lu D, Chen Q, Wang G, Liu L, Li G, Moran E. 2014. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int J Digit Earth. 9(1):63–105.
  • Luo Y, Wang X, Zhang X, Lu F. 2013. Biomass and its allocation of forest ecosystems in China. Beijing: Chinese Forestry Publishing House Press.
  • Maire GL, Marsden C, Nouvellon Y, Grinand C, Hakamada R, Stape JL, Laclau JP. 2011. MODIS NDVI time-series allow the monitoring of Eucalyptus plantation biomass. Remote Sens Environ. 115(10):2613–2625.
  • Miehle P, Grote R, Battaglia M, Feikema PM, Arndt SK. 2010. Evaluation of a process-based ecosystem model for long-term biomass and stand development of Eucalyptus globulus plantations. Eur J For Res. 129(3):377–391.
  • Qiu GZ, Wang SF, Zhang YJ. 2014. Temporal and spatial distribution pattern of carbon sink in forest vegetation of Jiangxi Province. Appl Mech Mater. 644–650:5295–5299.
  • Réjou-Méchain M, Tymen B, Blanc L, Fauset S, Feldpausch TR, Monteagudo A, Phillips OL, Richard H, Chave J. 2015. Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variations of a high-biomass Neotropical forest. Remote Sens Environ. 169:93–101.
  • Richardson AD, Anderson RS, Arain MA, Barr AG, Bohrer G, Chen G, Chen JM, Ciais P, Davis KJ, Desai AR, et al. 2012. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American carbon program site synthesis. Glob Change Biol. 18(2):566–584.
  • Sales MH, Souza CM, Kyriakidis PC, Roberts DA, Vidal E. 2007. Improving spatial distribution estimation of forest biomass with geostatistics: a case study for Rondonia, Brazil. Ecological Modelling. 205(1–2):221–230.
  • Schutz BE, Zwally HJ, Shuman CA, Hancock D, Dimarzio JP. 2005. Overview of the ICESat mission. Geophys Res Lett. 32(21):97–116.
  • Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL, Betts R, Ciais P, Cox P, Friedlingstein P. 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Glob Change Biol. 14(9):2015–2039.
  • Smith B, Warlind D, Arneth A, Hickler T, Leadley P, Siltberg J, Zaehle S. 2014. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11(7):2027–2054.
  • Su Y, Guo Q, Ma Q, Li W. 2015. SRTM DEM correction in vegetated mountain areas through the integration of spaceborne LiDAR, Airborne LiDAR, and optical imagery. Remote Sens. 7(9):11202–11225.
  • Su Y, Guo Q, Xue B, Hu T, Alvarez O, Tao S, Fang J. 2016. Spatial distribution of forest aboveground biomass in China: estimation through combination of spaceborne lidar, optical imagery, and forest inventory data. Remote Sens Environ. 173:187–199.
  • Sun XF, Li G, Wang M, Fan Z. 2019. Analyzing the Uncertainty of Estimating Forest Aboveground Biomass Using Optical Imagery and Spaceborne LiDAR. Remote Sensing. 11(6):722.
  • Tian X, Yan M, Van Der Tol C, Li Z, Su Z, Chen E, Li X, Li L, Wang X, Pan X. 2017. Modeling forest above-ground biomass dynamics using multi-source data and incorporated models: a case study over the Qilian mountains. Agric For Meteorol. 246:1–14.
  • Véga C, Vepakomma U, Morel J, Bader J-L, Rajashekar G, Jha C, Ferêt J, Proisy C, Pélissier R, Dadhwal V. 2015. Aboveground-biomass estimation of a complex tropical forest in India using Lidar. Remote Sens. 7(8):10607–10625.
  • Viana H, Aranha J, Lopes D, Cohen WB. 2012. Estimation of crown biomass of Pinus pinaster stands and shrubland above-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models. Ecol Model. 226:22–35.
  • Wang Y, Yue T, Lei Y, Du Z, Zhao M. 2016. Uncertainty of forest biomass carbon patterns simulation on provincial scale: a case study in Jiangxi Province, China. J Geogr Sci. 26(5):568–584.
  • Xi X, Han T, Wang C, Luo S, Xia S, Pan F. 2016. Forest above Ground biomass inversion by fusing GLAS with optical remote sensing data. ISPRS Int J Geo-Inf. 5(4):45.
  • Yadav BK, Nandy S. 2015. Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques. Environ Monit Assess. 187(5):308.
  • Yue T, Zhang L, Zhao N, Zhao M, Chen C, Du Z, Song W, Fan S, Shi CG, Wang Q, et al. 2015. A review of recent developments in HASM. Environ Earth Sci. 74(8):6541–6549.
  • Zhang J, Huang S, Hogg EH, Lieffers V, Qin Y, He F. 2014. Estimating spatial variation in Alberta forest biomass from a combination of forest inventory and remote sensing data. Biogeosciences 11(10):2793–2808.
  • Zhang Y, Liang S, Sun G. 2014. Forest biomass mapping of North-eastern China using GLAS and MODIS data. IEEE J Sel Top Appl Earth Observ Remote Sens. 7(1):140–152.
  • Zhao K, Suarez JC, Garcia M, Hu T, Wang C, Londo A. 2018. Utility of multitemporal Lidar for forest and carbon monitoring: tree growth, biomass dynamics, and carbon flux. Remote Sens Environ. 204:883–897.
  • Zhao M, Yue T, Zhao N, Sun X, Zhang X. 2014. Combining LPJ-GUESS and HASM to simulate the spatial distribution of forest vegetation carbon stock in China. J Geogr Sci. 24(2):249–268.
  • Zhu X, Liu D. 2015. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS J Photogramm Remote Sens. 102:222–231.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.