251
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Unsupervised band selection of hyperspectral data based on mutual information derived from weighted cluster entropy for snow classification

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1709-1731 | Received 14 Jun 2019, Accepted 25 Aug 2019, Published online: 18 Sep 2019

References

  • Bajcsy P, Groves P. 2004. Methodology for hyperspectral band selection. Photogramm Eng Remote Sens. 70(7):793–802.
  • Baumgardner M, Biehl L, Landgrebe D. 2015. 220 Band AVIRIS hyperspectral image data set: June 12, 1992 Indian Pine Test Site 3. Purdue University Research Repository. https://purr.purdue.edu/publications/1947/about/1#citethis
  • Bezdek JC. 1981. Pattern recognition with fuzzy objective function algorithms. Advanced applications in \pattern recognition. New York: Plenum.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32.
  • Chang C-I. 2013. Data dimensionality reduction. In: Hyperspectral data processing. Hoboken (NJ): John Wiley & Sons, Inc.; 168–199. doi:10.1002/9781118269787.ch6.
  • Congalton RG, Green K. 2009. Assessing the accuracy of remotely sensed data: Principles and practices. 2nd ed. Boca Raton (FL): CRC Press/Taylor & Francis.
  • Cooley T, Anderson GP, Felde GW, Hoke ML, Ratkowski AJ, Chetwynd JH, Gardner JA, Alder-Golden S, Matthew MW, Berk A, et al. 2002. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. IEEE International Geoscience and Remote Sensing Symposium; Jun 24–28; Toronto (ON): IEEE. p. 1414–1418.
  • Cover TM, Thomas JA. 2006. Elements of information theory. 2nd ed. Hoboken (NJ): Wiley. http://www.loc.gov/catdir/enhancements/fy0624/2005047799-d.html.
  • Denoth A. 1994. An electronic device for long-term snow wetness recording. Glaciology 19:104–106.
  • Doktor D, Lausch A, Spengler D, Thurner M. 2014. Extraction of plant physiological status from hyperspectral signatures using machine learning methods. Remote Sens. 6(12):12247–12274.
  • Dozier J, Green RO, Nolin AW, Painter TH. 2009. Interpretation of snow properties from imaging spectrometry. Remote Sensing Environ. 113:S25–S37.
  • Du Qian. 2003. Band selection and its impact on target detection and classification in hyperspectral image analysis. IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data; Oct 27–28; Greenbelt (MD): IEEE. p. 374–377.
  • Fischer G, Nachtergaele F, Prieler S, van Velthuizen HT, Verelst L, Wiberg D. 2008. Global agro-ecological zones assessment for agriculture. In: Harmonized world soil database version 1:2; IIASA, Laxenburg, Austria and FAO, Rome, Italy. http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
  • Guiaşu S. 1977. Information theory with applications. New York: McGraw-Hill.
  • Honkela T, Duch W, Girolami M, Kaski S. 2011. Artificial neural networks and machine learning - ICANN 2011: 21st International Conference on Artificial Neural Networks; Espoo; Finland; June 14–17, Proceedings, Part II. Lecture notes in computer science 6792. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Jia S, Tang G, Zhu J, Li Q. 2016. A novel ranking-based clustering approach for hyperspectral band selection. IEEE Trans Geosci Remote Sens. 54(1):88–102.
  • Khodr J, Younes R. 2011. Dimensionality reduction on hyperspectral images: a comparative review based on artificial datas. 2011 4th International Congress on Image and Signal Processing; Oct 15–17; Shanghai: IEEE. p. 1875–1883.
  • Landgrebe D. 2002. Hyperspectral image data analysis as a high dimensional signal processing problem. IEEE Signal Process Mag. 19(1):17–28.
  • Lee J-S, Pottier E. 2009. Polarimetric radar imaging: from basics to applications. In: Optical science and engineering. Boca Raton (FL): CRC; p. 143.
  • Liu H, Yu L. 2005. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans Knowl Data Eng. 17(4):491–502.
  • Lloyd S. 1982. Least squares quantization in PCM. IEEE Trans Inform Theory 28(2):129–137.
  • Martinez-Uso A, Pla F, Sotoca JÉM, García-Sevilla P. 2007. Clustering-based hyperspectral band selection using information measures. IEEE Trans Geosci Remote Sensing 45(12):4158–4171.
  • Patra S, Modi P, Bruzzone L. 2015. Hyperspectral band selection based on rough set. IEEE Trans Geosci Remote Sensing 53(10):5495–5503.
  • Plaza A, Martinez P, Plaza J, Perez R. 2005. Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations. IEEE Trans Geosci Remote Sensing 43(3):466–479.
  • Saeys Y, Inza I, Larrañaga P. 2007. A review of feature selection techniques in bioinformatics. Bioinformatics (Oxford, England) 23(19):2507–2517.
  • Sarhrouni E, Hammouch A, Aboutajdine D. 2012. Band selection and classification of hyperspectral images using mutual information: an algorithm based on minimizing the error probability using the inequality of Fano. IEEE International Conference on Multimedia Computing and Systems (ICMCS); May 10–12; Tangier, Morocco: IEEE. p. 155–159.
  • Shahi K, Shafri HZM, Taherzadeh E. 2014. A novel spectral index for automatic shadow detection in urban mapping based on WorldView-2 Satellite Imagery. Int J Environ Ecol Eng. 8(10):1774–1777.
  • Singh G, Venkataraman G, Yamaguchi Y, Park S-E. 2014. Capability assessment of fully polarimetric ALOS–PALSAR data for discriminating wet snow from other scattering types in mountainous regions. IEEE Trans Geosci Remote Sens. 52(2):1177–1196.
  • Singh G, Yamaguchi Y, Park S-E. 2013. General four-component scattering power decomposition with unitary transformation of coherency matrix. IEEE Trans Geosci Remote Sens. 51(5):3014–3022.
  • Su P, Liu D, Li X, Liu Z. 2018. A saliency-based band selection approach for hyperspectral imagery inspired by scale selection. IEEE Geosci Remote Sens Lett. 15(4):572–576.
  • Surendar M, Bhattacharya A, Singh G, Yamaguchi Y, Venkataraman G. 2015. Development of a snow wetness inversion algorithm using polarimetric scattering power decomposition model. Int J Appl Earth Observ Geoinform. 42:65–75.
  • Tan K, Li E, Qian D, Peijun D. 2014. Hyperspectral image classification using band selection and morphological profiles. IEEE J Select Top Appl Earth Observ Remote Sens 7(1):40–48.
  • Ulaby FT, Long DG, Blackwell WJ, Elachi C, Fung AK, Ruf C, Sarabandi K, Zebker HA, van Zyl J. 2014. Microwave radar and radiometric remote sensing. Ann Arbor: The University of Michigan Press.
  • Varade D, Dikshit O. 2018. Estimation of surface snow wetness using Sentinel-2 multispectral data. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci. IV–V:223–228.
  • Varade D, Maurya AK, Dikshit O. 2018a. Dhundi200 hyperion data. 10.13140/RG.2.2.10489.93282.
  • Varade D, Maurya AK, Dikshit O, Singh G. 2019. Solang data: hyperion bad band removed. In: FLAASH Corrected Hyperspectral Dataset with Corresponding Ground Truth.
  • Varade D, Dikshit O. 2017. A novel linear physical model for remote sensing of snow wetness and snow density using the visible and infrared bands. AGU Fall Meeting; New Orleans, Lousiana; Dec 11–15; New Orleans, Lousiana: AGU. Abstract C13C-0975.
  • Varade D, Maurya AK, Dikshit O. 2019. Unsupervised hyperspectral band selection using ranking based on a denoising error matching approach. Int J Remote Sens. 20:8031. 40
  • Varade D, Maurya AK, Sure A, Dikshit O. 2017. Supervised classification of snow cover using hyperspectral imagery. In: 2017 International Conference on Emerging Trends in Computing and Communication Technologies (ICETCCT); Nov 17–18; Dehradun, India: IEEE; p. 1–7.
  • Varade D, Sure A, Dikshit O. 2018. Potential of Landsat-8 and Sentinel-2A composite for land use land cover analysis. Geocarto Int. 10:1–16.
  • Varade DM, Maurya AK, Dikshit O. 2018b. Development of spectral indexes in hyperspectral imagery for land cover assessment. IETE Techn Rev. 1–9.
  • Varshney PK, Arora MK. 2010. Advanced image processing techniques for remotely sensed hyperspectral data. Berlin, Germany: Springer.
  • Wang J, Wang X, Zhang K, Madani K, Sabourin C. 2018. Morphological band selection for hyperspectral imagery. IEEE Geosci Remote Sens Lett. 15(8):1259–1263.
  • Yu S, Huang T-Z. 2017. Exponential weighted entropy and exponential weighted mutual information. Neurocomputing 249:86–94.
  • Zhang W, Li X, Dou Y, Zhao L. 2018. A geometry-based band selection approach for hyperspectral image analysis. IEEE Trans Geosci Remote Sens. 56(8):4318–4333.
  • Zhu G, Huang Y, Lei J, Bi Z, Xu F. 2016. Unsupervised hyperspectral band selection by dominant set extraction. IEEE Trans Geosci Remote Sens. 54(1):227–239.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.