1,402
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Semantic segmentation of land cover from high resolution multispectral satellite images by spectral-spatial convolutional neural network

ORCID Icon & ORCID Icon
Pages 657-677 | Received 16 Sep 2019, Accepted 16 Feb 2020, Published online: 04 Mar 2020

References

  • Abou MI, Ve Tanton TW. 2003. Improvements in land use mapping for irrigated agriculture from satellite sensor data using a multi-stage maximum likelihood classification. Int J Remote Sens. 24(21):4197–4206.
  • Akar Ö, Güngör O. 2015. Integrating multiple texture methods and NDVI to the random forest classification algorithm to detect tea and hazelnut plantation areas in northeast Turkey. Int J Remote Sens. 36(2):442–464.
  • Bolar A, Kanuri RN, Shrihari S, Natarajan S, Nagajothi K. 2018. Classification of urban data using satellite imaging. International Conference on Advances in Computing, Communications and Informatics (ICACCI); July 24-28; Honolulu, HI, USA: IEEE. p. 1843–1847.
  • Blaschke T, Hay GJ, Weng Q, Resch B. 2011. Collective sensing: integrating geospatial technologies to understand urban systems—an overview. Remote Sens. 3(8):1743–1776.
  • Carranza-García M, García-Gutiérrez J, Riquelme J. 2019. A Framework for evaluating land use and land cover classification using convolutional neural networks. Remote Sens. 11(3):274.
  • Carrao H, Gonçalves P, Caetano M. 2008. Contribution of multispectral and multitemporal information from MODIS images to land cover classification. Remote Sens Environ. 112(3):986–997.
  • Chen Y, Lin Z, Zhao X, Wang G, Gu Y. 2014. Deep learning-based classification of hyperspectral data. IEEE J-STARS. 7(6):2094–2107.
  • Civco DL. 1993. Artificial neural networks for land-cover classification and mapping. Int J Geogr Inf Sci. 7(2):173–186.
  • Congalton RG, Green K. 1999. Assessing the accuracy of remotely sensed data: principles and applications. Boca Raton (FL): Lewis Publishers.
  • Di W, Bhardwaj A, Wei J. 2018. Deep learning essentials: your hands-on guide to the fundamentals of deep learning and neural network modeling. Birmingham (UK): Packt Publishing.
  • Du Q, Chang CI. 2001. A linear constrained distance-based discriminant analysis for hyperspectral image classification. Pattern Recognit. 34(2):361–373.
  • Duro DC, Franklin SE, Dubé MG. 2012. Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests. Int J Remote Sens. 33(14):4502–4526.
  • Fauvel M, Chanussot J, Benediktsson JA. 2006. Evaluation of kernels for multiclass classification of hyperspectral remote sensing data. ICASSP 2006, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 14–19 May, Toulouse, France. IEEE, New York. Vol. 2. p. 813–816.
  • Fauvel M, Tarabalka Y, Benediktsson JA, Chanussot J, Tilton JC. 2013. Advances in spectral-spatial classification of hyperspectral images. Proc IEEE. 101(3) :652–675.
  • Fu G, Liu C, Zhou R, Sun T, Zhang Q. 2017. Classification for high resolution remote sensing imagery using a fully convolutional network. Remote Sens. 9(5):498.
  • Gao T, Zhu J, Zheng X, Shang G, Huang L, Wu S. 2015. Mapping spatial distribution of larch plantations from multi-seasonal Landsat-8 OLI imagery and multi-scale textures using random forests. Remote Sens. 7(2):1702–1720.
  • Gewali UB, Monteiro ST. 2018. A tutorial on modelling and inference in undirected graphical models for hyperspectral image analysis. Int J Remote Sens. 39(20):7104–7143.
  • Girshick R, Donahue J, Darrell T, Malik J. 2016. Region-based convolutional networks for accurate object detection and semantic segmentation. IEEE Trans Pattern Anal Mach Intell. 38(1):142–158.
  • Gislason P, Benediktsson J, Ve Sveinsson J. 2006. Random forests for land cover classification. Pattern Recognit Lett. 27(4):294–300.
  • Goodfellow I, Bengio Y, Courville A. 2016. Deep learning. Cambridge (MA): MIT Press.
  • Graves A, Liwicki M, Fernandez S, Bertolami R, Bunke H, Schmidhuber JA. 2009. Novel connectionist system for improved unconstrained handwriting recognition. IEEE Trans Pattern Anal Mach Intell. 31(5):855–868.
  • He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR). p. 770–778.
  • Hinton GE, Osindero S, Teh YW. 2006. A Fast learning algorithm for deep belief nets. Neural Comput. 18(7):1527–1554.
  • Hu W, Huang Y, Wei L, Zhang F, Li H. 2015. Deep convolutional neural networks for hyperspectral image classification. J Sens. 2015:1–12.
  • Kal-Yi H. 2002. A synergistic automatic clustering technique (syneract) for multispectral image analysis. Photogramm Eng Remote Sens. 68:33–40.
  • Khatami R, Mountrakis G, Stehman SV. 2016. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: general guidelines for practitioners and future research. Remote Sens Environ. 177:89–100.
  • Kemker R, Salvaggio C, Kanan C. 2017. High-resolution multispectral dataset for semantic segmentation. arXiv:1703.01918.
  • Kestur R, Farooq S, Abdal R, Mehraj E, Narasipura O, Mudigere M. 2018. UFCN: a fully convolutional neural network for road extraction in RGB imagery acquired by remote sensing from an unmanned aerial vehicle. J Appl Rem Sens. 12(01):1.
  • Kim Y. 2014. Convolutional neural networks for sentence classification. arXiv:1408.5882.
  • Kingma DP, Ba J. 2014. Adam: a method for stochastic optimization. arXiv:1412.6980.
  • Kogan F, Kussul N, Adamenko T, Skakun S, Kravchenko O, Kryvobok O, Shelestov A, Kolotii A, Kussul O, Lavrenyuk A. 2013. Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models. Int J Appl Earth Obs Geoinf. 23:192–203.
  • Kolotii A, Kussul N, Shelestov A, Skakun S, Yailymov B, Basarab R, Lavreniuk M, Oliinyk T, Ostapenko V. 2015. Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine. 36th International Symposium on Remote Sensing of Environment; May 11–15; Berlin, Germany. p. 39–44.
  • Krizhevsky A, Sutskever I, Hinton GE. 2012. Imagenet classification with deep convolutional neural networks. Proceedings of the 26th Annual Conference on Neural Information Processing Systems 2012; Dec 3–6; Lake Tahoe, NV, USA. p. 1097–1105.
  • Kuemmerle T, Chaskovskyy O, Knorn J, Radeloff VC, Kruhlov I, Keeton WS, Hostert P. 2009. Forest cover change and illiegal logging in the Ukranian Carpathians in the transition period from 1988 to 2007. Remote Sens Environ. 113(6):1194–1207.
  • Kussul N, Lavreniuk M, Skakun S, Shelestov A. 2017. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci Remote Sensing Lett. 14(5):778–782.
  • Li DC, Liu CW. 2010. A class possibility based kernel to increase classification accuracy for small data sets using support vector machines. Expert Syst Appl. 37(4):3104–3110.
  • Li N, Wang C, Zhao H, Gong X, Wang D. 2018. A novel deep convolutional neural network for spectral–spatial classification of hyperspectral data. International Archives of the Photogrammetry. Remote Sens Spat Inf Sci. 42:3.
  • Li Y, Zhang H, Shen Q. 2017. Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 9(1):67.
  • Long J, Shelhamer E, Darrell T. 2015. Fully convolutional networks for semantic segmentation. Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR). p. 3431–3440.
  • Maggiori E, Tarabalka Y, Charpiat G, Alliez P. 2017.Convolutional neural networks for large-scale remote-sensing image classification. IEEE Trans Geosci Remote Sens. 55(2):645–657.
  • Makantasis K, Karantzalos K, Doulamis A, Doulamis N. 2015. Deep supervised learning for hyperspectral data classification through convolutional neural networks. Proc. IEEE Int. Geoscience and Remote Sensing Symp (IGARSS). p. 4959–4962.
  • Melgani F, Bruzzone L. 2004. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens. 42(8):1778–1790.
  • Noh H, Hong S, Han B. 2015. Learning deconvolutional network for semantic segmentation. Proc. IEEE Int. Conf. Computer Vision (ICCV). p. 1520–1528.
  • Padwick C, Deskevich M, Pacifici F, Smallwood S. 2010. WorldView-2 pan-sharpening. Proceedings of the ASPRS 2010 Annual Conference; San Diego, CA, USA. Vol. 2630.
  • Pal M, Mather PM. 2006. Some issues in the classification of DAIS hyperspectral data. Int J Remote Sens. 27(14):2895–2916.
  • Reis S, Yomralioğlu T. 2006. Detection of current and potential hazelnut plantation areas in Trabzon, North East Turkey using GIS and RS. J Environ Biol. 27(4):653–659.
  • Roy SK, Krishna G, Dubey SR, Chaudhuri BB. 2019. HybridSN: exploring 3D-2D CNN feature hierarchy for hyperspectral image classification. arXiv:1902.06701.
  • Samaniego L, Bardossy A, Schulz K. 2008. Supervised classification of remotely sensed imagery using a modified K-NN technique. IEEE Trans Geosci Remote Sens. 46(7):2112–2125.
  • Saralioglu E, Gungor O. 2019. Use of crowdsourcing in evaluating post-classification accuracy. Eur J Remote Sens. 52(sup 1):1–11.
  • Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv. https://arxiv.org/pdf/1409.1556.pdf.
  • Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R. 2014. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 15:1929–1958.
  • Stumpf A, Kerle N. 2011. Object-oriented mapping of landslides using random forests. Remote Sens Environ. 115(10):2564–2577.
  • Teffahi H, Yao H, Chaib S, Belabid N. 2019. A novel spectral-spatial classification technique for multispectral images using extended multi-attribute profiles and sparse autoencoder. Remote Sens Lett. 10(1):30–38.
  • Wang W, Dou S, Jiang Z, Sun L. 2018. A fast dense spectral–spatial convolution network framework for hyperspectral images classification. Remote Sens. 10(7):1068.
  • Waske B, van der Linden S, Oldenburg C, Jakimow B, Rabe A, Hostert P. 2012. ImageRF–a user-oriented implementation for remote sensing image analysis with random forests. Environ Modell Softw. 35:192–193.
  • Wu Z, Gao Y, Li L, Xue J, Li Y. 2019. Semantic segmentation of high-resolution remote sensing images using fully convolutional network with adaptive threshold. Connect Sci. 31(2):169–184.
  • Wurm M, Stark T, Zhu XX, Weigand M, Taubenböck H. 2019. Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks. ISPRS J Photogramm Remote Sens. 150:59–69.
  • Yang X, Ye Y, Li X, Lau RY, Zhang X, Huang X. 2018. Hyperspectral image classification with deep learning models. IEEE Trans Geosci Remote Sens. 56(9):5408–5423.
  • Zhang K, Baoqin H, Shengyang L, Yuyang S. 2018. Complex scene classification of remote sensing images based on CNN. Remote Sens Land Resour. 30(4):49–55.
  • Zhang P, Ke Y, Zhang Z, Wang M, Li P, Zhang S. 2018. Urban land use and land cover classification using novel deep learning models based on high spatial resolution satellite imagery. Sensors. 18(11):3717.
  • Zhao W, Du S. 2016. Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Trans Geosci Remote Sens. 54(8):4544–4554.
  • Zhu XX, Tuia D, Mou L, Xia GS, Zhang L, Xu F, Fraundorfer F. 2017. Deep learning in remote sensing: a comprehensive review and list of resources. IEEE Geosci Remote Sens Mag. 5(4):8–36.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.