1,270
Views
49
CrossRef citations to date
0
Altmetric
Original Articles

Decision tree based ensemble machine learning approaches for landslide susceptibility mapping

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 4594-4627 | Received 07 Oct 2020, Accepted 24 Jan 2021, Published online: 19 Mar 2021

References

  • Abellán J, Masegosa AR. 2007. Combining decision trees based on imprecise probabilities and uncertainty measures. Berlin, Heidelberg: Springer. p. 512–523.
  • Abellan J, Moral S. 1999. Completing a total uncertainty measure in the dempster-shafer theory. Int J Gen Syst. 28(4-5):299–314.
  • Abellan J, Moral S. 2000. A non-specificity measure for convex sets of probability distributions. Int J Unc Fuzz Knowl Based Syst. 08(03):357–367.
  • Abellán J, Moral S. 2003. Building classification trees using the total uncertainty criterion. Int J Intell Syst. 18(12):1215–1225.
  • Achour Y, Boumezbeur A, Hadji R, Chouabbi A, Cavaleiro V, Bendaoud EA. 2017. Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine. Arab J Geosci. 10(8):194.
  • Ali A, Huang J, Lyamin AV, Sloan SW, Griffiths DV, Cassidy MJ, Li JH. 2014. Simplified quantitative risk assessment of rainfall-induced landslides modelled by infinite slopes. Eng Geol. 179:102–116.
  • Arabameri A, Chen W, Loche M, Zhao X, Li Y, Lombardo L, Cerda A, Pradhan B, Bui DT. 2020. Comparison of machine learning models for gully erosion susceptibility mapping. Geosci Front. 11(5):1609–1620.
  • Arabameri A, Karimi-Sangchini E, Pal SC, Saha A, Chowdhuri I, Lee S, Tien Bui D. 2020. Novel credal decision tree-based ensemble approaches for predicting the landslide susceptibility. Remote Sens. 12(20):3389.
  • Arabameri A, Pourghasemi HR, Yamani M. 2017. Applying different scenarios for landslide spatial modeling using computational intelligence methods. Environ Earth Sci. 76(24):832.
  • Arabameri A, Pradhan B, Bui DT. 2020. Spatial modelling of gully erosion in the Ardib River Watershed using three statistical-based techniques. CATENA. 190:104545.
  • Arabameri A, Pradhan B, Lombardo L. 2019. Comparative assessment using boosted regression trees, binary logistic regression, frequency ratio and numerical risk factor for gully erosion susceptibility modelling. CATENA. 183(104223):104223.
  • Arabameri A, Pradhan B, Rezaei K, Yamani M, Pourghasemi HR, Lombardo L. 2018. Spatial modelling of gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief function–logistic regression algorithm. Land Degrad Dev. 29(11):4035–4049.
  • Arabameri A, Saha S, Roy J, Tiefenbacher JP, Cerda A, Biggs T, Pradhan B, Ngo PTT, Collins AL. 2020. A novel ensemble computational intelligence approach for the spatial prediction of land subsidence susceptibility. Sci Total Environ. 726:138595.
  • Arabameri A, Yamani M, Pradhan B, Melesse A, Shirani K, Bui DT. 2019. Novel ensembles of COPRAS multi-criteria decision-making with logistic regression, boosted regression tree, and random forest for spatial prediction of gully erosion susceptibility. Sci Total Environ. 688:903–916.
  • Arabameri C, Rodrigo-Comino P, Sohrabi B, Bui T. 2019. Proposing a novel predictive technique for gully erosion susceptibility mapping in arid and semi-arid regions (Iran). Remote Sens. 11(21):2577.
  • Aristizábal Giraldo EV. 2013. SHIA_Landslide: developing a physically based model to predict shallow landslides triggered by rainfall in tropical environments. Escuela de Geociencias y Medio Ambiente.
  • Barlow J, Martin Y, Franklin SE. 2003. Detecting translational landslide scars using segmentation of Landsat ETM + and DEM data in the northern Cascade Mountains, British Columbia. Can J Remote Sens. 29(4):510–517.
  • Beck A. 2008. Simulation: the practice of model development and use. 1st ed. John Wiley & Sons.
  • Beven KJ, Kirkby MJ. 1979. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol Sci J. 24(1):43–69.
  • Breiman L. 1996. Bagging predictors. Mach Learn. 24(2):123–140.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32.
  • Bui DT, Ho T-C, Pradhan B, Pham B-T, Nhu V-H, Revhaug I. 2016. GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks. Environ Earth Sci. 75(14):1101.
  • Bui DT, Lofman O, Revhaug I, Dick O. 2011. Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat Hazards. 59(3):1413–1444.
  • Cao B, Dong W, Lv Z, Gu Y, Singh S, Kumar P. 2020. Hybrid microgrid many-objective sizing optimization with fuzzy decision. IEEE Trans Fuzzy Syst. 28(11):2702–2710.
  • Cao B, Wang X, Zhang W, Song H, Lv Z. 2020. A many-objective optimization model of industrial internet of things based on private blockchain. IEEE Netw. 34(5):78–83.
  • Cao B, Zhao J, Lv Z, Gu Y, Yang P, Halgamuge SK. 2020. Multiobjective evolution of fuzzy rough neural network via distributed parallelism for stock prediction. IEEE Trans Fuzzy Syst. 28(5):939–952.
  • Carotenuto F, Angrisani AC, Bakthiari A, Carratù MT, Di Martire D, Finicelli GF, Raia P, Calcaterra D. 2017. A new statistical approach for landslide susceptibility assessment in the urban area of Napoli (Italy). In: Mikos M, Tiwari B, Yin Y, Sassa K, editors. Advancing culture of living with landslides. Cham (Switzerland): Springer International Publishing. p. 881–889.
  • Chakrabortty R, Pal SC, Chowdhuri I, Malik S, Das B. 2020. Assessing the importance of static and dynamic causative factors on erosion potentiality using SWAT, EBF with uncertainty and plausibility, logistic regression and novel ensemble model in a sub-tropical environment. J Indian Soc Remote Sens. 48(5):765–789.
  • Chao L, Zhang K, Li Z, Zhu Y, Wang J, Yu Z. 2018. Geographically weighted regression based methods for merging satellite and gauge precipitation. J Hydrol. 558:275–289.
  • Chen H, Chen A, Xu L, Xie H, Qiao H, Lin Q, Cai K. 2020. A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources. Agric Water Manage. 240:106303.
  • Chen W, Li H, Hou E, Wang S, Wang G, Panahi M, Li T, Peng T, Guo C, Niu C, et al. 2018. GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Sci Total Environ. 634:853–867.
  • Chowdhuri I, Pal SC, Chakrabortty R. 2020. Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India. Adv Space Res. 65(5):1466–1489.
  • Conoscenti C, Angileri S, Cappadonia C, Rotigliano E, Agnesi V, Märker M. 2014. Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy). Geomorphology. 204:399–411.
  • Dai F, Lee C. 2001. Frequency–volume relation and prediction of rainfall-induced landslides. Eng Geol. 59(3-4):253–266.
  • Davoodi MH, Shariatmadari N, Samimi M. 2003. Investigation of Barikan landslide. Internat J Indus Engg Prod Manag (IJIE) (International Journal of Engineering Science) (Persian). 14(2): 10-10. https://www.sid.ir/en/journal/ViewPaper.aspx?id=2743
  • De Vita P, Napolitano E, Godt JW, Baum RL. 2013. Deterministic estimation of hydrological thresholds for shallow landslide initiation and slope stability models: case study from the Somma-Vesuvius area of southern Italy. Landslides. 10(6):713–728.
  • Dempster AP. 2008. Upper and lower probabilities induced by a multivalued mapping. In: Classic works of the Dempster-Shafer theory of belief functions. Berlin, Heidelberg: Springer. p. 57–72.
  • Di Napoli M, Carotenuto F, Cevasco A, Confuorto P, Di Martire D, Firpo M, Pepe G, Raso E, Calcaterra D. 2020. Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability. Landslides. 17(8):1897–1914..
  • Dou J, Yunus AP, Merghadi A, Shirzadi A, Nguyen H, Hussain Y, Avtar R, Chen Y, Pham BT, Yamagishi H. 2020. Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Sci Total Environ. 720:137320.
  • Feizizadeh B, Blaschke T. 2014. An uncertainty and sensitivity analysis approach for GIS-based multicriteria landslide susceptibility mapping. Int J Geogr Inf Sci. 28(3):610–638.
  • Feng W, Lu H, Yao T, Yu Q. 2020. Drought characteristics and its elevation dependence in the Qinghai–Tibet plateau during the last half-century. Sci Rep. 10(1):1–11.
  • Finlay P, Fell R, Maguire P. 1997. The relationship between the probability of landslide occurrence and rainfall. Can Geotech J. 34(6):811–824.
  • Fu X, Yang Y. 2020. Modeling and analysis of cascading node-link failures in multi-sink wireless sensor networks. Reliab Eng Syst Saf. 197:106815.
  • Garosi Y, Sheklabadi M, Conoscenti C, Pourghasemi HR, Van Oost K. 2019. Assessing the performance of GIS- based machine learning models with different accuracy measures for determining susceptibility to gully erosion. Sci Total Environ. 664:1117–1132.
  • Gislason PO, Benediktsson JA, Sveinsson JR. 2006. Random forests for land cover classification. Pattern Recog Lett. 27(4):294–300.
  • Godt JW, Baum RL, Savage WZ, Salciarini D, Schulz WH, Harp EL. 2008. Transient deterministic shallow landslide modeling: requirements for susceptibility and hazard assessments in a GIS framework. Eng Geol. 102(3-4):214–226.
  • Goetz JN, Brenning A, Petschko H, Leopold P. 2015. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput Geosci. 81:1–11.
  • Hair J, Black W, Babin B, Anderson R. 2009. Multivariate data analysis. 7th ed. Vol. 12. Pearson; p. 221–233.
  • Han C, Zhang B, Chen H, Wei Z, Liu Y. 2019. Spatially distributed crop model based on remote sensing. Agric Water Manage. 218:165–173.
  • He Q, Xu Z, Li S, Li R, Zhang S, Wang N, Pham BT, Chen W. 2019. Novel entropy and rotation forest-based credal decision tree classifier for landslide susceptibility modeling. Entropy. 21(2):106.
  • Hidalgo CA, Vega JA, ParraObando M. 2017. Effect of the rainfall infiltration processes on the landslide hazard assessment of unsaturated soils in tropical mountainous regions. Engineering and Mathematical Topics in Rainfall [Internet]. [accessed 2020 Dec 21]. https://www.intechopen.com/books/engineering-and-mathematical-topics-in-rainfall/effect-of-the-rainfall-infiltration-processes-on-the-landslide-hazard-assessment-of-unsaturated-soil.
  • Ho TK. 1998. The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell. 20(8):832–844.
  • Hong H, Liu J, Bui DT, Pradhan B, Acharya TD, Pham BT, Zhu A-X, Chen W, Ahmad BB. 2018. Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). CATENA. 163:399–413.
  • Jaboyedoff M, Michoud C, Derron M-H, Jérémie V, Leibundgut G, Sudmeier-Rieux K, Nadim F, Leroi E. 2016. Human-induced landslides: toward the analysis of anthropogenic changes of the slope environment. In: Avresa S, Cascini L, Picarelli L, Scavia C, editors. Landslides and engineered slopes. Experience, theory and practice. Berlin, Heidelberg: Springer, CRC Press; p. 217–232.
  • Kornejady A, Ownegh M, Bahremand A. 2017. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. CATENA. 152:144–162.
  • Kotsianti S, Kanellopoulos D. 2007. Combining bagging, boosting and dagging for classification problems. Berlin, Heidelberg: Springer. p. 493–500.
  • Lei X, Chen W, Avand M, Janizadeh S, Kariminejad N, Shahabi H, Costache R, Shahabi H, Shirzadi A, Mosavi A. 2020. GIS-based machine learning algorithms for gully erosion susceptibility mapping in a semi-arid region of Iran. Remote Sens. 12(15):2478.
  • Li T, Xu M, Zhu C, Yang R, Wang Z, Guan Z. 2019. A deep learning approach for multi-frame in-loop filter of HEVC. IEEE Trans Image Process. 28(11):5663–5678.
  • Liao D, Valliant R. 2012. Variance inflation factors in the analysis of complex survey data. Survey Methodol. 38(1):53–62.
  • Liu S, Chan FT, Ran W. 2016. Decision making for the selection of cloud vendor: an improved approach under group decision-making with integrated weights and objective/subjective attributes. Expert Syst Appl. 55:37–47.
  • Liu S, Yu W, Chan FT, Niu B. 2021. A variable weight-based hybrid approach for multi-attribute group decision making under interval-valued intuitionistic fuzzy sets. Int J Intell Syst. 36(2):1015–1052.
  • Lombardo L, Opitz T, Huser R. 2018. Point process-based modeling of multiple debris flow landslides using INLA: an application to the 2009 Messina disaster. Stoch Environ Res Risk Assess. 32(7):2179–2198.
  • Mantas CJ, Abellán J. 2014. Analysis and extension of decision trees based on imprecise probabilities: application on noisy data. Expert Syst Appl. 41(5):2514–2525.
  • Merghadi A, Abderrahmane B, Tien Bui D. 2018. Landslide susceptibility assessment at Mila Basin (Algeria): a comparative assessment of prediction capability of advanced machine learning methods. IJGI. 7(7):268.
  • Moral-García S, Mantas CJ, Castellano JG, Benítez MD, Abellán J. 2020. Bagging of credal decision trees for imprecise classification. Expert Syst Appl. 141:112944.
  • Nsengiyumva JB, Luo G, Nahayo L, Huang X, Cai P. 2018. Landslide susceptibility assessment using spatial multi-criteria evaluation model in Rwanda. IJERPH. 15(2):243.
  • Oh H-J, Lee S. 2017. Shallow landslide susceptibility modeling using the data mining models artificial neural network and boosted tree. Applied Sciences. 7(10):1000.
  • Oh H-J, Lee S, Hong S-M. 2017. Landslide susceptibility assessment using frequency ratio technique with iterative random sampling. J Sens. 2017:e3730913.
  • Pal M. 2005. Random forest classifier for remote sensing classification. Int J Remote Sens. 26(1):217–222.
  • Pal SC, Arabameri A, Blaschke T, Chowdhuri I, Saha A, Chakrabortty R, Lee S, Band SS. 2020. Ensemble of machine-learning methods for predicting gully erosion susceptibility. Remote Sens. 12(22):3675.
  • Pal SC, Chowdhuri I. 2019. GIS-based spatial prediction of landslide susceptibility using frequency ratio model of Lachung River basin, North Sikkim, India. SN Appl Sci. 1(5):416.
  • Pal SC, Das B, Malik S. 2019. Potential landslide vulnerability zonation using integrated analytic hierarchy process and GIS technique of Upper Rangit Catchment Area, West Sikkim, India. J Indian Soc Remote Sens. 47(10):1643–1655.
  • Park HJ, Jang JY, Lee JH. 2019. Assessment of rainfall-induced landslide susceptibility at the regional scale using a physically based model and fuzzy-based Monte Carlo simulation. Landslides. 16(4):695–713.
  • Pawluszek K. 2019. Landslide features identification and morphology investigation using high-resolution DEM derivatives. Nat Hazards. 96(1):311–330.
  • Pham BT, Bui DT, Pham HV, Le HQ, Prakash I, Dholakia M. 2017. Landslide hazard assessment using random subspace fuzzy rules based classifier ensemble and probability analysis of rainfall data: a case study at Mu Cang Chai District, Yen Bai Province (Viet Nam). J Indian Soc Remote Sens. 45(4):673–683.
  • Pham BT, Khosravi K, Prakash I. 2017. Application and comparison of decision tree-based machine learning methods in landside susceptibility assessment at Pauri Garhwal Area, Uttarakhand, India. Environ Process. 4(3):711–730.
  • Pham BT, Phong TV, Nguyen-Thoi T, Trinh PT, Tran QC, Ho LS, Singh SK, Duyen TTT, Nguyen LT, Le HQ, et al. 2020. GIS-based ensemble soft computing models for landslide susceptibility mapping. Adv Space Res. 66(6):1303–1320.
  • Pham BT, Prakash I, Dou J, Singh SK, Trinh PT, Tran HT, Le TM, Van Phong T, Khoi DK, Shirzadi A, et al. 2020. A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers. Geocarto Int. 35(12):1267–1292.
  • Pham BT, Tien Bui D, Prakash I, Dholakia MB. 2017. Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. CATENA. 149:52–63.
  • Piao Y, Piao M, Jin CH, Shon HS, Chung J-M, Hwang B, Ryu KH. 2015. A new ensemble method with feature space partitioning for high-dimensional data classification. Math Prob Eng. 2015:1–12.
  • Pourghasemi H, Pradhan B, Gokceoglu C, Moezzi KD. 2013. A comparative assessment of prediction capabilities of Dempster–Shafer and weights-of-evidence models in landslide susceptibility mapping using GIS. Geomatics Nat Hazards Risk. 4(2):93–118.
  • Pourghasemi HR, Jirandeh AG, Pradhan B, Xu C, Gokceoglu C. 2013. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. J Earth Syst Sci. 122(2):349–369.
  • Pourghasemi HR, Rossi M. 2017. Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods. Theor Appl Climatol. 130(1-2):609–633.
  • Pradhan AMS, Kim YT. 2016. Evaluation of a combined spatial multi-criteria evaluation model and deterministic model for landslide susceptibility mapping. CATENA. 140:125–139.
  • Pradhan B. 2010. Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Adv Space Res. 45(10):1244–1256.
  • Pradhan B, Lee S. 2010. Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides. 7(1):13–30.
  • Pradhan B, Mansor S, Pirasteh S, Buchroithner MF. 2011. Landslide hazard and risk analyses at a landslide prone catchment area using statistical based geospatial model. Int J Remote Sens. 32(14):4075–4087.
  • Qian J, Feng S, Tao T, Hu Y, Li Y, Chen Q, Zuo C. 2020. Deep-learning-enabled geometric constraints and phase unwrapping for single-shot absolute 3D shape measurement. APL Photonics. 5(4):046105.
  • Qiu T, Shi X, Wang J, Li Y, Qu S, Cheng Q, Cui T, Sui S. 2019. Deep learning: a rapid and efficient route to automatic metasurface design. Adv Sci (Weinh)). 6(12):1900128.
  • Qu S, Han Y, Wu Z, Raza H. 2020. Consensus modeling with asymmetric cost based on data-driven robust optimization. Group Decis Negotiation. 1–38.DOI:10.1007/s10726-020-09707-w
  • Roda-Boluda D, D’Arcy M, Whittaker A, McDonald J. 2017. The effects of lithology and landsliding on hillslope sediment supply: case study from Southern Italy. EGU 2017. 19:4977.
  • Roda-Boluda DC, D’Arcy M, McDonald J, Whittaker AC. 2018. Lithological controls on hillslope sediment supply: insights from landslide activity and grain size distributions. Earth Surf Process Landforms. 43(5):956–977.
  • Roy J, Saha S, Arabameri A, Blaschke T, Bui DT. 2019. A novel ensemble approach for landslide susceptibility mapping (LSM) in Darjeeling and Kalimpong Districts, West Bengal, India. Remote Sens. 11(23):2866.
  • Roy P, Chakrabortty R, Chowdhuri I, Malik S, Das B, Pal SC. 2020. Development of different machine learning ensemble classifier for gully erosion susceptibility in Gandheswari watershed of West Bengal, India. In: Rout JK, Rout M, Das H, editors. Machine learning for intelligent decision science [Internet]. Singapore (Singapore): Springer Singapore. p. 1–26 [accessed 2020 Jun 25]. http://link.springer.com/10.1007/978-981-15-3689-2_1.
  • Roy P, Pal SC, Chakrabortty R, Chowdhuri I, Malik S, Das B. 2020. Threats of climate and land use change on future flood susceptibility. J Cleaner Prod. 272:122757.
  • Scott P. 1994. Assessment of natural resource use by communities from Mt. Elgon National Park. In: UNDP/Technical Report No 15, 1994. Berlin, Heidelberg: Springer.
  • Sepe C, Confuorto P, Angrisani AC, Di Martire D, Di Napoli M, Calcaterra D, 2019. Application of a statistical approach to landslide susceptibility map generation in urban settings. In: Shakoor A, Cato K, editors. IAEG/AEG Annual Meeting Proceedings, San Francisco, California, 2018 – Volume 1. Cham (Switzerland): Springer International Publishing. p. 155–162.
  • Shafer G. 1976. A mathematical theory of evidence.Boston, MA: Springer.
  • Shahbazi B, Chelgani SC, Matin S. 2017. Prediction of froth flotation responses based on various conditioning parameters by Random Forest method. Colloids Surf A. 529:936–941.
  • Shi K, Wang J, Tang Y, Zhong S. 2020. Reliable asynchronous sampled-data filtering of T–S fuzzy uncertain delayed neural networks with stochastic switched topologies. Fuzzy Sets Syst. 381:1–25.
  • Shi K, Wang J, Zhong S, Tang Y, Cheng J. 2020. Non-fragile memory filtering of TS fuzzy delayed neural networks based on switched fuzzy sampled-data control. Fuzzy Sets Syst. 394:40–64.
  • Shirzadi A, Bui DT, Pham BT, Solaimani K, Chapi K, Kavian A, Shahabi H, Revhaug I. 2017. Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environ Earth Sci. 76(2):60.
  • Skurichina M, Duin RP. 2002. Bagging, boosting and the random subspace method for linear classifiers. Pattern Anal Appl. 5(2):121–135.
  • Soil Conservation and Watershed Research Institute Report. 2001. Landslides stabilization methods project (Barikan Landslide Project).
  • Summa V, Margiotta S, Colaiacovo R, Giannossi ML. 2014. The influence of the grain-size, mineralogical and geo-chemical composition on the Verdesca landslide. Nat Hazards Earth Syst Sci Discuss. 2:5047–5077.
  • Tao D, Tang X, Li X, Wu X. 2006. Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Trans Pattern Anal Mach Intell. 28(7):1088–1099.
  • Tian P, Lu H, Feng W, Guan Y, Xue Y. 2020. Large decrease in streamflow and sediment load of Qinghai–Tibetan Plateau driven by future climate change: a case study in Lhasa River Basin. CATENA. 187:104340.
  • Tien Bui D, Hoang N-D, Martínez-Álvarez F, Ngo P-TT, Hoa PV, Pham TD, Samui P, Costache R. 2020. A novel deep learning neural network approach for predicting flash flood susceptibility: a case study at a high frequency tropical storm area. Sci Total Environ. 701:134413.
  • Tien Bui D, Tuan TA, Klempe H, Pradhan B, Revhaug I. 2016. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides. 13(2):361–378.
  • Tsai Y-H, Wang J, Chien W-T, Wei C-Y, Wang X, Hsieh S-H. 2019. A BIM-based approach for predicting corrosion under insulation. Autom Constr. 107:102923.
  • Walley P. 1996. Inferences from multinomial data: learning about a bag of marbles. J R Stat Soc Ser B (Methodol). 58(1):3–34.
  • Wang S, Zhang K, van Beek LPH, Tian X, Bogaard TA. 2020. Physically based landslide prediction over a large region: coupling low-resolution hydrological modelling with high-resolution slope stability assessment. Environ Model & Softw. 124. DOI:10.1016/j.envsoft.2019.104607
  • Wang X, Tang X. 2006. Random sampling for subspace face recognition. Int J Comput Vision. 70(1):91–104.
  • Webb GI. 2000. Multiboosting: a technique for combining boosting and wagging. Mach Learn. 40(2):159–196.
  • van Westen CJ, Castellanos E, Kuriakose SL. 2008. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol. 102(3-4):112–131.
  • van Westen CJ, Rengers N, Soeters R. 2003. Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards. 30(3):399–419.
  • Wu C, Wu P, Wang J, Jiang R, Chen M, Wang X. 2020. Critical review of data-driven decision-making in bridge operation and maintenance. Struct Infrastruct Eng. 1–24.DOI:10.1080/15732479.2020.1833946
  • Wu T, Cao J, Xiong L, Zhang H. 2019. New stabilization results for semi-Markov chaotic systems with fuzzy sampled-data control. Complexity. 2019:1–15.
  • Xu M, Li T, Wang Z, Deng X, Yang R, Guan Z. 2018. Reducing complexity of HEVC: a deep learning approach. IEEE Trans Image Process. 27(10):5044–5059.
  • Yalcin A. 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. CATENA. 72(1):1–12.
  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T. 2011. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. CATENA. 85(3):274–287.
  • Yan J, Pu W, Zhou S, Liu H, Bao Z. 2020. Collaborative detection and power allocation framework for target tracking in multiple radar system. Inf Fusion. 55:173–183.
  • Yilmaz I. 2010. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci. 61(4):821–836.
  • Zhang K, Wang Q, Chao L, Ye J, Li Z, Yu Z, Yang T, Ju Q. 2019. Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China. J Hydrol. 574:903–914.
  • Zhang Y, Ge T, Tian W, Liou Y-A. 2019. Debris flow susceptibility mapping using machine-learning techniques in Shigatse Area, China. Remote Sens. 11(23):2801.
  • Zhu J, Wang X, Wang P, Wu Z, Kim MJ. 2019. Integration of BIM and GIS: geometry from IFC to shapefile using open-source technology. Autom Constr. 102:105–119.
  • Zhu J, Wu P, Chen M, Kim MJ, Wang X, Fang T. 2020. Automatically processing IFC clipping representation for BIM and GIS integration at the process level. Appl Sci. 10(6):2009.
  • Zuo C, Chen Q, Gu G, Feng S, Feng F, Li R, Shen G. 2013. High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection. Opt Lasers Eng. 51(8):953–960.
  • Zuo C, Chen Q, Tian L, Waller L, Asundi A. 2015. Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective. Opt Lasers Eng. 71:20–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.