735
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Mining spatiotemporal growth pattern of volunteered data using a contributor-based approach

ORCID Icon, ORCID Icon &
Pages 4805-4822 | Received 17 Oct 2020, Accepted 11 Feb 2021, Published online: 29 Mar 2021

References

  • Abdullahi S, Schardt M, Pretzsch H. 2017. An unsupervised two-stage clustering approach for forest structure classification based on X-band InSAR data: A case study in complex temperate forest stands. Int J Appl Earth Obs Geoinf. 57:36–48.
  • Agarwal P, Skupin A. 2008. Self-organising maps: applications in geographic information science. England: John Wiley & Sons.
  • Arsanjani JJ, Vaz E. 2015. An assessment of a collaborative mapping approach for exploring land use patterns for several European metropolises. Int J Appl Earth Obs Geoinf. 35:329–337.
  • Arsanjani JJ, Helbich M, Bakillah M, Loos L. 2015a. The emergence and evolution of OpenStreetMap: a cellular automata approach. Int J Digital Earth. 8(1):76–90.
  • Arsanjani JJ, Mooney P, Helbich M, Zipf A. 2015b. An exploration of future patterns of the contributions to OpenStreetMap and development of a contribution index. Trans GIS. 19(6):896–914.
  • Backfrieder C, Mecklenbrauker CF, Ostermayer G. 2013. TraffSim–A Traffic Simulator for Investigating Benefits Ensuing from Intelligent Traffic Management, 2013 European Modelling Symposium (EMS), p. 451–456.
  • Barron C, Neis P, Zipf A. 2014. A comprehensive framework for intrinsic OpenStreetMap quality analysis. Trans GIS. 18(6):877–895.
  • Basse RM, Omrani H, Charif O, Gerber P, Bódis K. 2014. Land use changes modelling using advanced methods: Cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale. Appl Geogr. 53:160–171.
  • Berberoğlu S, Akın A, Clarke KC. 2016. Cellular automata modeling approaches to forecast urban growth for Adana, Turkey: a comparative approach. Landscape Urban Plann. 153:11–27.
  • Bimonte S, Boucelma O, Machabert O, Sellami S. 2014. A new spatial OLAP approach for the analysis of volunteered geographic information. Comput Environ Urban Syst. 48:111–123.
  • Budhathoki NR. 2010. Participants' motivations to contribute geographic information in an online community [dissertation]. Urbana (IL): University of Illinois at Urbana-Champaign.
  • Budhathoki NR, Haythornthwaite C. 2013. Motivation for open collaboration: crowd and community models and the case of OpenStreetMap. Am Behav Sci. 57(5):548–575.
  • Corcoran P, Mooney P, Bertolotto M. 2013. Analysing the growth of OpenStreetMap networks. Spatial Stat. 3:21–32.
  • Couclelis H. 1985. Cellular worlds: a framework for modeling micro—macro dynamics. Environ Plan A. 17(5):585–596.
  • Dallmeyer J, Lattner AD, Timm IJ. 2014. GIS-based traffic simulation using OSM. In: Data mining for geoinformatics. New York (NY): Springer; p. 65–82.
  • Fonte CC, Bastin L, See L, Foody G, Lupia F. 2015. Usability of VGI for validation of land cover maps. Int J Geogr Inform Sci. 29(7):1269–1291.
  • Goodchild MF. 2007. Citizens as sensors: the world of volunteered geography. GeoJournal. 69(4):211–221.
  • Goodchild MF, Li L. 2012. Assuring the quality of volunteered geographic information. Spatial Stat. 1:110–120.
  • Gröchenig S, Brunauer R, Rehrl K. 2014. Digging into the history of VGI data-sets: results from a worldwide study on OpenStreetMap mapping activity. J Locat Based Serv. 8(3):198–210.
  • Hagenauer J, Helbich M. 2012. Mining urban land-use patterns from volunteered geographic information by means of genetic algorithms and artificial neural networks. Int J Geogr Inform Sci. 26(6):963–982.
  • Haklay M, Weber P. 2008. Openstreetmap: user-generated street maps. Pervasive Computing. IEEE. 7(4):12–18.
  • Haklay M(M), Basiouka S, Antoniou V, Ather A. 2010. How many volunteers does it take to map an area well? The validity of Linus’ law to volunteered geographic information. Cartogr J. 47(4):315–322.
  • Helbich M, Amelunxen C, Neis P, Zipf A. 2012. Comparative spatial analysis of positional accuracy of OpenStreetMap and proprietary geodata. Proceedings of GI_Forum; Salzburg, Austria. p. 24–33.
  • Hu X, Weng Q. 2009. Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. Remote Sens Environ. 113(10):2089–2102.
  • Jiang B, Harrie L. 2004. Selection of Streets from a Network Using Self‐Organizing Maps. Trans GIS. 8(3):335–350.
  • Johnson BA, Iizuka K, Bragais MA, Endo I, Magcale-Macandog DB. 2017. Employing crowdsourced geographic data and multi-temporal/multi-sensor satellite imagery to monitor land cover change: a case study in an urbanizing region of the Philippines. Comput Environ Urban Syst. 64:184–193.
  • Kaiser HF. 1974. An index of factorial simplicity. Psychometrika. 39(1):31–36.
  • Kaklanis N, Votis K, Tzovaras D. 2013. Open Touch/Sound Maps: a system to convey street data through haptic and auditory feedback. Comput Geosci. 57:59–67.
  • Kalteh AM, Hjorth P, Berndtsson R. 2008. Review of the self-organizing map (SOM) approach in water resources: Analysis, modelling and application. Environ Model Softw. 23(7):835–845.
  • Kohonen T. 1982. Self-organized formation of topologically correct feature maps. Biol Cybern. 43(1):59–69.
  • Kohonen T. 2001. Self-organizing maps. Berlin, Germany: Springer.
  • Kohonen T. 2013. Essentials of the self-organizing map. Neural Netw. 37:52–65.
  • Koukoletsos T, Haklay M, Ellul C. 2012. Assessing data completeness of VGI through an automated matching procedure for linear data. Trans GIS. 16(4):477–498.
  • Leichtle T, Geiß C, Lakes T, Taubenböck H. 2017. Class imbalance in unsupervised change detection: a diagnostic analysis from urban remote sensing. Int J Appl Earth Obs Geoinf. 60:83–98.
  • Li X, Yeh AG. O 2002. Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int J Geogr Inform Sci. 16(4):323–343.
  • Liu Y, Weisberg RH. 2011. A review of self-organizing map applications in meteorology and oceanography. In: Mwasiagi JI, editor. Self organizing maps-applications and novel algorithm design. Rijeka, Croatia: InTech; p. 253–272.
  • MacQueen J. 1967. Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. California: University of California Press; p. 281–297.
  • Maguire S, Tomko M. 2017. Ripe for the picking? Dataset maturity assessment based on temporal dynamics of feature definitions. Int J Geogr Inform Sci. 31(7):1334–1358.
  • Mohammadi N, Malek M. 2015. Artificial intelligence-based solution to estimate the spatial accuracy of volunteered geographic data. J Spat Sci. 60(1):119–135.
  • Mohammadi N, Sedaghat A. 2019. A framework for classification of volunteered geographic data based on user’s need. Geocarto Int. 1–16.doi:10.1080/10106049.2019.1641562.
  • Mooney P, Corcoran P. 2012a. The annotation process in OpenStreetMap. Trans GIS. 16(4):561–579.
  • Mooney P, Corcoran P. 2012b. Characteristics of heavily edited objects in OpenStreetMap. Future Int. 4(1):285–305.
  • Neis P, Zielstra D. 2014. Recent developments and future trends in volunteered geographic information research: the case of OpenStreetMap. Future Int. 6(1):76–106.
  • Neis P, Zielstra D, Zipf A. 2013. Comparison of volunteered geographic information data contributions and community development for selected world regions. Future Int. 5(2):282–300.
  • Neis P, Zipf A. 2012. Analyzing the contributor activity of a volunteered geographic information project: the case of OpenStreetMap. IJGI. 1(2):146–165.
  • Ogie RI, Clarke RJ, Forehead H, Perez P. 2019. Crowdsourced social media data for disaster management: lessons from the PetaJakarta.org project. Comput Environ Urban Syst. 73:108–117.
  • Otsu N. 1979. A threshold selection method from gray-level histograms. IEEE Trans Syst, Man, Cybern. 9(1):62–66.
  • Prinzio MD, Castellarin A, Toth E. 2011. Data-driven catchment classification: application to the pub problem. Hydrol Earth Syst Sci. 15(6):1921–1935.
  • Ramm F, Topf J, Chilton S. 2011. OpenStreetMap: Using and enhancing the free map of the world. Cambridge: UIT Cambridge.
  • Shafizadeh-Moghadam H. 2019. Improving spatial accuracy of urban growth simulation models using ensemble forecasting approaches. Comput Environ Urban Syst. 76:91–100.
  • Vesanto J, Alhoniemi E. 2000. Clustering of the self-organizing map. IEEE Trans Neural Netw. 11(3):586–600.
  • Wolfram S. 1984. Cellular automata as models of complexity. Nature. 311(5985):419–424.
  • Xu T, Gao J. 2019. Directional multi-scale analysis and simulation of urban expansion in Auckland, New Zealand using logistic cellular automata. Comput Environ Urban Syst. 78:101390.
  • Xu T, Gao J, Coco G. 2019. Simulation of urban expansion via integrating artificial neural network with Markov chain–cellular automata. Int J Geogr Inform Sci. 33(10):1960–1983.
  • Yang J, Gong J, Tang W, Liu C. 2020. Patch-based cellular automata model of urban growth simulation: Integrating feedback between quantitative composition and spatial configuration. Comput Environ Urban Syst. 79:101402.
  • Zielstra D, Zipf A. 2010. Quantitative studies on the data quality of OpenStreetMap in Germany. In: Proceedings of the Sixth International Conference on Geographic Information Science, GIScience, Zurich, Switzerland, p. 20–26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.