178
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Eigen vector-based classification of pearl millet crop in presence of other similar structured (sorghum and maize) crops using fully polarimetric Radarsat-2 SAR data

, ORCID Icon, &
Pages 4857-4869 | Received 08 Oct 2020, Accepted 01 Mar 2021, Published online: 15 Apr 2021

References

  • Blaes X, Vanhalle L, Defourny P. 2005. Efficiency of crop identification based on optical and SAR image time series. Remote Sens Environ. 96(3-4):352–365.
  • Cable J, Kovacs J, Shang J, Jiao X. 2014. Multi-temporal polarimetric RADARSAT-2 for land cover monitoring in Northeastern Ontario, Canada. Remote Sens. 6(3):2372–2392.
  • Chauhan S, Srivastava HS. 2016. Comparative evaluation of the sensitivity of multipolarized SAR and optical data for various land cover classes. Int J Advance Remote Sens GIS Geogr. 4(1):1–14.
  • Chen S-W, Li Y-Z, Wang X-S, Xiao S-P, Sato M. 2014. Modeling and interpretation of scattering mechanisms in polarimetric synthetic aperture radar: advances and perspectives. IEEE Signal Process Mag. 31(4):79–89.
  • Cloude SR, Pottier E. 1996. A review of target decomposition theorems in radar polarimetry. IEEE Trans Geosci Remote Sens. 34(2):498–518.
  • Cloude SR, Pottier E. 1997. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans Geosci Remote Sens. 35(1):68–78.
  • Haldar D, Dave R, Dave VA. 2018. Evaluation of full-polarimetric parameters for vegetation monitoring in Rabi (winter) season. Egypt J Remote Sens Space Sci. 21:S67–S73.
  • Freeman A, Durden SL. 1998. A three-component scattering model for polarimetric SAR data. IEEE Trans Geosci Remote Sens. 36(3):963–973.
  • Guo J, Wei PL, Liu J, Jin B, Su BF, Zhou ZS. 2018. Crop classification based on differential characteristics of Hα scattering parameters for multitemporal quad- and dual-polarization SAR images. IEEE Trans Geosci Remote Sens. 56(10):6111–6123.
  • Jiao X, McNairn H, Shang J, Pattey E, Liu J, Champagne C. 2011. The sensitivity of RADARSAT-2 polarimetric SAR data to corn and soybean leaf area index. Can J Remote Sens. 37(1):69–81.
  • Lopez-Sanchez JM, Vicente-Guijalba F, Ballester-Berman JD, Cloude SR. 2014. Polarimetric response of rice fields at C-band: analysis and phenology retrieval. IEEE Trans Geosci Remote Sens. 52(5):2977–2993.
  • McNairn H, Shang J. 2016. A review of multitemporal synthetic aperture radar (SAR) for crop monitoring. In: Ban Y, editor. Remote sensing and digital image processing. Vol. 20. Switzerland: Springer Nature Switzerland AG; p. 317–340.
  • McNairn H, Shang J, Jiao X, Champagne C. 2009. The contribution of ALOS PALSAR multipolarization and polarimetric data to crop classification. IEEE Trans Geosci Remote Sens. 47(12):3981–3992.
  • Ouarzeddine M, Souissi B, Belhadj-Aissa A. 2007. Unsupervised classification using Wishart classifier. USTHB, FEI; p. 1–6.
  • Patel P, Srivastava HS. 2013. Ground truth planning for synthetic aperture radar (SAR): addressing various challenges using statistical approach. Int J Advance Remote Sens GIS Geogr. 01(02):1–17.
  • Patel P, Srivastava HS, Navalgund RR. 2009. Use of synthetic aperture radar polarimetry to characterize wetland targets of Keoladeo National Park, Bharatpur, India. Curr Sci. 97(4):529–537.
  • Pottier E, Lee JS. 2000. Application of the “H/A/(alpha)under-bar” polarimetric decomposition theorem for unsupervised classification of fully polarimetric SAR data based on the Wishart distribution. Ceos Sar Workshop. 450(November):335–340.
  • Saran S, Das A, Pandey D. 2015. Investigation of the capability of H-α decomposition of compact polarimetric SAR data with application to lunar surface. 46th Lunar & Planetary Science Conference, The Woodlands, Texas, Mar. 16–20, 2015.
  • Shanmugapriya S, Haldar D, Danodia A. 2019. Time series Sentinel-1A profile analysis for heterogeneous Kharif crops discrimination in North India. URSI AP-RASC 2019, New Delhi, India, 09-15 March 2019.
  • Shanmugapriya S, Haldar D, Srivastava HS. 2021. Condition assessment of pearl millet/bajra crop in different vigour zones using Radar Vegetation Index. Spatial Inf Res. doi:10.1007/s41324-021-00380-y.
  • Sivasankar T, Kumar D, Srivastava HS, Patel P. 2018. Advances in radar remote sensing of agricultural crops: a review. Int J Adv Sci Eng Inf Technol. 8(4):1126.
  • Srivastava HS, Patel P, Sharma Y, Navalgund RR. 2009. Multi-frequency and multipolarized SAR response to thin vegetation and scattered trees. Curr Sci. 97(3):425–429.
  • Srivastava HS, Patel P, Sunkara NP, Sharma Y, Khan BA, Praveen B, Arun Prasad KCA, Sharma S, Vijayan L, Vijayan VS, et al. 2008. Potential applications of multi-parametric synthetic aperture radar (SAR) data in wetland inventory: a case study of Keoladeo National Park (A World Heritage and Ramsar Site), Bharatpur, India. In: Sengupta M, Dalwani R, editors. Proceedings of Taal 2007: The 12th World Lake Conference, Jaipur, India; p. 1862–1879.
  • Whelen T, Siqueira P. 2017. Use of time-series L-band UAVSAR data for the classification of agricultural fields in the San Joaquin Valley. Remote Sens Environ. 193:216–224.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.