896
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

A comparative assessment of modeling groundwater vulnerability using DRASTIC method from GIS and a novel classification method using machine learning classifiers

, &
Pages 5832-5850 | Received 11 Feb 2021, Accepted 05 Apr 2021, Published online: 01 Jun 2021

References

  • Ahmad W, Choi M, Kim S, Kim D. 2019. Detection of land subsidence and its relationship with land cover types using ESA Sentinel satellite data: a case study of Quetta Valley, Pakistan. Int J Remote Sens. 40(24):9572–9603.
  • Aller L. 1985. DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. Robert S. Kerr Environmental Research Laboratory. Ada, Oklahoma: Office of Research and Development, US Environmental Protection Agency.
  • Baalousha HM. 2011. Mapping groundwater contamination risk using GIS and groundwater modelling. A case study from the Gaza Strip. Arab J Geosci. 4(3–4):483–494.
  • Banadkooki FB, Ehteram M, Ahmed AN, Teo FY, Fai CM, Afan HA, Sapitang M, El-Shafie A. 2020. Enhancement of groundwater-level prediction using an integrated machine learning model optimized by whale algorithm. Nat Resour Res. 29(5):3233–3252.
  • Barzegar R, Moghaddam AA, Adamowski J, Fijani E. 2017. Comparison of machine learning models for predicting fluoride contamination in groundwater. Stoch Environ Res Risk Assess. 31(10):2705–2718.
  • Breiman L. 1996. Bagging predictors. Mach Learn. 24(2):123–140.
  • Breiman L. 2001. Random forests. Machine Learn. 45(1):5–32.
  • Breiman L, Friedman J, Stone CJ, Olshen RA. 1984. Classification and regression trees. Belmont, CA, USA: Wadsworth International Group.
  • Chen F-W, Liu C-W. 2012. Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environ. 10(3):209–222.
  • Christopher AA, Alias Balamurugan SA. 2014. Prediction of warning level in aircraft accidents using classification techniques: an empirical study. In: Intelligent computing, networking, and informatics. New Delhi: Springer. p. 1217–1223.
  • Cobbing J. 2020. Groundwater and the discourse of shortage in Sub-Saharan Africa. Hydrogeol J. 28(4):1143–1154.
  • Díaz-Alcaide S, Martínez-Santos P. 2019. Mapping fecal pollution in rural groundwater supplies by means of artificial intelligence classifiers. J Hydrol. 577:124006.
  • Dorsey-Spitz JS. 2015. Modeling nitrate contamination of groundwater in Mountain Home, Idaho using the drastic method (PhD Thesis). University Of Southern California.
  • EAD. 2018. Groundwater wells inventory and soil salinity mapping for Abu Dhabi Emirate.
  • Elmahdy S, Mohamed M. 2013. Influence of geological structures on groundwater accumulation and groundwater salinity in Northern UAE. Geocarto Int. 28(5):453–472.
  • Elmahdy SI, Mohamed MM. 2015. Groundwater of Abu Dhabi Emirate: a regional assessment by means of remote sensing and geographic information system. Arab J Geosci. 8(12):11279–11292.
  • Foster SSD. 1987. Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy.
  • Ghazavi R, Ebrahimi Z. 2015. Assessing groundwater vulnerability to contamination in an arid environment using DRASTIC and GOD models. Int. J. Environ. Sci. Technol. 12:2909–2918.
  • Gholap J. 2012. Performance tuning of J48 Algorithm for prediction of soil fertility. arXiv preprint arXiv:12083943.
  • Huang X, Shi L, Suykens JA. 2014. Support vector machine classifier with pinball loss. IEEE Trans Pattern Anal Mach Intell. 36(5):984–997.
  • Hutchinson ML, Antono E, Gibbons BM, Paradiso S, Ling J, Meredig B. 2017. Overcoming data scarcity with transfer learning. arXiv preprint arXiv:171105099.
  • Iqbal J, Nazzal Y, Howari F, Xavier C, Yousef A. 2018. Hydrochemical processes determining the groundwater quality for irrigation use in an arid environment: the case of Liwa Aquifer, Abu Dhabi, United Arab Emirates. Groundwater Sustainable Dev. 7:212–219.
  • Jesiya NP, Gopinath G. 2019. A customized FuzzyAHP-GIS based DRASTIC-L model for intrinsic groundwater vulnerability assessment of urban and peri urban phreatic aquifer clusters. Groundwater Sustainable Dev. 8:654–666.
  • Kalantar B, Al-Najjar HA, Pradhan B, Saeidi V, Halin AA, Ueda N, Naghibi SA. 2019. Optimized conditioning factors using machine learning techniques for groundwater potential mapping. Water. 11(9):1909.
  • Keerthi SS, Shevade SK, Bhattacharyya C, Murthy KRK. 2000. A fast iterative nearest point algorithm for support vector machine classifier design. IEEE Trans Neural Netw. 11(1):124–136.
  • Khan Q, Kalbus E, Alshamsi DM, Mohamed MM, Liaqat MU. 2019. Hydrochemical analysis of groundwater in Remah and Al Khatim regions, United Arab Emirates. Hydrology. 6(3):60.
  • Khosravi K, Sartaj M, Tsai FT-C, Singh VP, Kazakis N, Melesse AM, Prakash I, Tien Bui D, Pham BT. 2018. A comsparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Sci Total Environ. 642:1032–1049.
  • Knoll L, Breuer L, Bach M. 2019. Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning. Sci Total Environ. 668:1317–1327.
  • Liu Q, He Q, Shi Z. 2008. Extreme support vector machine classifier. In: Pacific-Asia conference on knowledge discovery and data mining. Berlin, Heidelberg: Springer. p. 222–233.
  • Manjunatha MC, Ahmed A, Basavarajappa HT. 2020. Artificial recharge structures for groundwater augmentation in Mysuru Taluk of Karnataka State, India using Geospatial Technology. J Environ Sci Comput Sci Eng Technol. 9(4):652–674.
  • Moghaddam DD, Rahmati O, Panahi M, Tiefenbacher J, Darabi H, Haghizadeh A, Haghighi AT, Nalivan OA, Bui DT. 2020. The effect of sample size on different machine learning models for groundwater potential mapping in mountain bedrock aquifers. Catena. 187:104421.
  • Mohamed M, El-Shorbagy W, Kizhisseri MI, Chowdhury R, McDonald A. 2020a. Evaluation of policy scenarios for water resources planning and management in an arid region. J Hydrol RS. 32:100758.
  • Mohamed M, Parimalarenganayaki S, Khan Q, Murad A. 2020b. Review on the use of environmental isotopes for groundwater recharge and evaporation studies in the gulf cooperation council countries. Groundw Sustain Dev. 12:100546.
  • Mohamed MM, Al-Mualla AA. 2010a. Water demand forecasting in Umm Al-Quwain (UAE) using the IWR-MAIN specify forecasting model. Water Resour Manage. 24(14):4093–4120.
  • Mohamed MM, Al-Mualla AA. 2010b. Water demand forecasting in Umm Al-Quwain using the constant rate model. Desalination. 259(1–3):161–186.
  • Mohamed M, Saleh N, Sherif M. 2010a. Modeling in-situ benzene bioremediation in the contaminated Liwa aquifer (UAE) using the slow-release oxygen source technique. Environ Earth Sci. 61(7):1385–1399.
  • Mohamed M, Saleh N, Sherif M. 2010b. Sensitivity of natural attenuation to variations in kinetic and transport parameters. Bull Environ Contam Toxicol. 84(4):443–449.
  • Monserud RA, Leemans R. 1992. Comparing global vegetation maps with the Kappa statistic. Ecol Modell. 62(4):275–293.
  • Naghibi SA, Pourghasemi HR. 2015. A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water Resour Manage. 29(14):5217–5236.
  • Naghibi SA, Pourghasemi HR, Dixon B. 2016. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ Monit Assess. 188(1):44.
  • Nair MR, Ramya GR, Sivakumar PB. 2017. Usage and analysis of Twitter during 2015 Chennai flood towards disaster management. Procedia Comput Sci. 115:350–358.
  • Oh H-J, Kim Y-S, Choi J-K, Park E, Lee S. 2011. GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J Hydrol. 399(3–4):158–172.
  • Othman AK. 2005. Quantitative and qualitative assessment of groundwater resources in Al-Khatim Area, UAE.
  • Pal M. 2005. Random forest classifier for remote sensing classification. Int J Remote Sens. 26(1):217–222.
  • Rahmati O, Choubin B, Fathabadi A, Coulon F, Soltani E, Shahabi H, Mollaefar E, Tiefenbacher J, Cipullo S, Ahmad BB, et al. 2019. Predicting uncertainty of machine learning models for modelling nitrate pollution of groundwater using quantile regression and UNEEC methods. Sci Total Environ. 688:855–866.
  • Ribeiro L. 2000. IS: Um novo índice de susceptibilidade de aquíferos à contaminação agrícola Internal report. ERSHA/CVRM, Instituto Superior Ténico Lisbon, Portugal, 12.
  • Rizeei HM, Pradhan B, Saharkhiz MA, Lee S. 2019. Groundwater aquifer potential modeling using an ensemble multi-adoptive boosting logistic regression technique. J Hydrol. 579:124172.
  • Sahoo S, Russo TA, Elliott J, Foster I. 2017. Machine learning algorithms for modeling groundwater level changes in agricultural regions of the US. Water Resour Res. 53(5):3878–3895.
  • Sajedi-Hosseini F, Malekian A, Choubin B, Rahmati O, Cipullo S, Coulon F, Pradhan B. 2018. A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Sci Total Environ. 644:954–962.
  • Secunda S, Collin ML, Melloul AJ. 1998. Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region. J Environ Manage. 54(1):39–57.
  • Şener E, Şener Ş. 2015. Evaluation of groundwater vulnerability to pollution using fuzzy analytic hierarchy process method. Environ Earth Sci. 73(12):8405–8424.
  • Seyoum WM, Kwon D, Milewski AM. 2019. Downscaling GRACE TWSA data into high-resolution groundwater level anomaly using machine learning-based models in a glacial aquifer system. Remote Sens. 11(7):824.
  • Sulova A, Jokar Arsanjani J. 2020. Exploratory analysis of driving force of wildfires in Australia: an application of machine learning within Google Earth engine. Remote Sens. 13(1):10.
  • Vapnik V. 2000. The nature of statistical learning theory [Internet]. 2nd ed. New York: Springer-Verlag; [accessed 2020 Dec 4]. https://www.springer.com/gp/book/9780387987804.
  • Wang J, He J, Chen H. 2012. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China. Sci Total Environ. 432:216–226.
  • WHO. 2011. Guidelines for drinking-water quality. 4th ed. [Internet]. http://www.who.int/water_sanitation_health/publications/2011/dwq_guidelines/en/.
  • Zaki MJ, Meira W, Jr, Meira W. 2014. Data mining and analysis: fundamental concepts and algorithms. New York: Cambridge University Press.
  • Zektser IS, Everett LG. 2004. Groundwater resources of the world and their use, IHP-VI Series on Groundwater. Paris: U. N. Educ. Sci. and Cultural Organ.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.