969
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Applicability of spatial prediction models for landslide susceptibility in land-use zoning instruments: a guideline in a coastal settlement in South-Central Chile

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 6474-6493 | Received 09 Feb 2021, Accepted 24 May 2021, Published online: 29 Jul 2021

References

  • Aleotti P, Chowdhury R. 1999. Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ. 58(1):21–44.
  • Atkinson PM, Massari R. 1998. Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy. Comput Geosci. 24(4):373–385.
  • Ayalew L, Yamagishi H. 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology. 65(1–2):15–31.
  • Bordoni M, Galanti Y, Bartelletti C, Persichillo MG, Barsanti M, Giannecchini R, Avanzi GD, Cevasco A, Brandolini P, Galve JP, et al. 2020. The influence of the inventory on the determination of the rainfall-induced shallow landslides susceptibility using generalized additive models. Catena. 193:104630.
  • Brenning A. 2005. Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat Hazards Earth Syst Sci. 5(6):853–862.
  • Brenning A. 2012. Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: the R package sperrorest. Int Geosci Remote Sens Symp. 5372–5375.
  • Brenning A, Schwinn M, Ruiz-Páez AP, Muenchow J. 2015. Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province. Nat Hazards Earth Syst Sci. 15(1):45–57.
  • Brock J, Schratz P, Petschko H, Muenchow J, Micu M, Brenning A. 2020. The performance of landslide susceptibility models critically depends on the quality of digital elevations models. Geomat Nat Hazards Risk. 11(1):1075–1092.
  • Budimir MEA, Atkinson PM, Lewis HG. 2015. A systematic review of landslide probability mapping using logistic regression. Landslides. 12(3):419–436.
  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P. 1991. GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Process Landforms. 16(5):427–445.
  • Carrara A, Pike RJ. 2008. GIS technology and models for assessing landslide hazard and risk. Geomorphology. 94(3–4):257–260.
  • Cascini L. 2008. Applicability of landslide susceptibility and hazard zoning at different scales. Eng Geol. 102(3–4):164–177.
  • Cascini L, Bonnard C, Corominas J, Jibson R, Montero-Olarte J. 2005. Landslide hazard and risk zoning for urban planning and development. In: Landslide risk management. 1st ed. Vancouver (Canada): Taylor & Francis Group plc.; p. 209–246.
  • Chang K-T, Merghadi A, Yunus AP, Pham BT, Dou J. 2019. Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques. Sci Rep. 9(1):1–21.
  • Chen W, Pourghasemi HR, Panahi M, Kornejady A, Wang J, Xie X, Cao S. 2017. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques. Geomorphology. 297:69–85.
  • Chen W, Zhang S, Li R, Shahabi H. 2018. Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Sci Total Environ. 644:1006–1018.
  • Chung C-J, Fabbri AG. 2008. Predicting landslides for risk analysis—Spatial models tested by a cross-validation technique. Geomorphology. 94(3–4):438–452.
  • Corominas J, Moya J. 2008. A review of assessing landslide frequency for hazard zoning purposes. Eng Geol. 102(3–4):193–213.
  • Dai FC, Lee CF. 2001. Frequency–volume relation and prediction of rainfall-induced landslides. Eng Geol. 59(3–4):253–266.
  • Dai FC, Lee CF, Ngai YY. 2002. Landslide risk assessment and management: an overview. Eng Geol. 64(1):65–87.
  • Devynck J. 1970. Contribución al estudio de la circulación atmosférica en Chile y el clima de la región de BíoBío [Contribution to the study of atmospheric circulation in Chile and the climate of the Bíobío region]. Concepción, Chile: Universidad de Concepción. Spanish.
  • Dragićević S, Lai T, Balram S. 2015. GIS-based multicriteria evaluation with multiscale analysis to characterize urban landslide susceptibility in data-scarce environments. Habitat Int. 45:114–125.
  • Espinoza C. 2013. Propuesta metodológica para establecer áreas de riesgo por remoción en masa, Chile [A methodological proposal for the establishment of areas at risk for landslides in Chile]. Cuad Geogr Rev Colomb Geogr. 22(2):145–169. Spanish.
  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage W. 2008. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol. 102(3–4):85–98.
  • Galli C. 1967. Geología urbana y suelos de fundación de Concepción y Talcahuano, Chile. Concepción, Chile [Urban geology and foundation soils of Concepción and Talcahuano, Chile]. Concepción (Chile): Universidad de Concepción. Spanish.
  • Garrido J, Saunders WSA. 2019. Disaster risk reduction and land use planning: opportunities to improve practice. IAEG/AEG Annual Meeting Proceedings; Vol. 5; San Francisco, California: Springer, Cham. p. 161–165.
  • Goetz J, Brenning A, Petschko H, Leopold P. 2015. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput Geosci. 81:1–11.
  • Goetz J, Guthrie R, Brenning A. 2011. Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology. 129(3–4):376–386.
  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P. 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology. 31(1–4):181–216.
  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M. 2006. Estimating the quality of landslide susceptibility models. Geomorphology. 81(1–2):166–184.
  • Hastie T, Tibshirani R. 1986. Generalized additive models. Stat Sci. 1(3):297–310.
  • He Q, Shahabi H, Shirzadi A, Li S, Chen W, Wang N, Chai H, Bian H, Ma J, Chen Y, et al. 2019. Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms. Sci Total Environ. 663:1–15.
  • Huabin W, Gangjun L, Weiya X, Gonghui W. 2005. GIS-based landslide hazard assessment: an overview. Prog Phys Geogr. 29(4):548–567.
  • IGM. 2005. Instituto Geográfico Militar [Geographic Military Institute]. Santiago, Chile.
  • INE. 2019. Ciudades, Pueblos, Aldeas y Caseríos [Cities, Towns and Villages]. In: Instituto Nacional de Estadísticas. Santiago, Chile. p. 1–171. Spanish.
  • Kuhn M, Johnson K. 2013. Applied predictive modeling. New York, NY: Springer.
  • Li J. 2016. Assessing spatial predictive models in the environmental sciences: accuracy measures, data variation and variance explained. Environ Model Softw. 80:1–8.
  • Li J. 2019. A critical review of spatial predictive modeling process in environmental sciences with reproducible examples in R. Appl Sci. 9(10):2048.
  • López P. 2015. Análisis de umbrales de precipitación de procesos de remoción en masa, en laderas urbanizadas de la costa de Chile centro-sur [An analysis of precipitation thresholds of landslide processes on urbanized slopes of the Central-Southern Chilean Coast. Cuad Geogr Rev Colomb Geogr. 24(2):93–112. Spanish.
  • Mardones M. 1978. El sitio geomorfológico de las ciudades de Concepción y Talcahuano [The geomorphological site of the cities of Concepción and Talcahuano]. Concepción (Chile): Universidad de Concepción. Spanish.
  • Mardones M, Echeverría F, Jara C. 2004. Una contribucion al estudio de los desastres naturales en Chile Centro Sur: efectos ambientales de las precipitaciones del 26 de junio del 2005 en el area Metropolitana de Concepcion [A contribution to the study of natural hazards in South Central Chile: environmental effects of the rainfall of June 26, 2005 in the Metropolitan area of Concepcion]. Invest Geogr Chile. 38:1–24. Spanish.
  • Martínez C, Moris R, Quense J. 2016. Valoración de las áreas de riesgo por Tsunami y potencial de evacuación: propuestas para la reducción del riesgo de desastres a escala local [Assessment of Tsunami risk areas and evacuation potential: proposals for disaster risk reduction at the local scale]. In: Concurso Políticas Públicas 2016. Propuestas para Chile. p. 243–278. Spanish.
  • Martínez C, Tamburini L, Moris R. 2017. Gestión del riesgo, descentralización y políticas públicas: se reduce el riesgo de desastres en Chile? [Risk management, decentralization and public policies: is disaster risk reduced in Chile?]. In: Vial C, Hernández J, editors. ¿Para qué Descentralizar? Centralismo y Políticas Públicas en Chile: Análisis y Evaluación por Sectores. Santiago, Chile: Universidad Autonoma de Chile. p. 153–179. Spanish.
  • Mateos RM, López-Vinielles J, Poyiadji E, Tsagkas D, Sheehy M, Hadjicharalambous K, Liscák P, Podolski L, Laskowicz I, Iadanza C, et al. 2020. Integration of landslide hazard into urban planning across Europe. Landsc Urban Plan. 196:103740.
  • Ministerio de Obras Públicas. 2019. Red Vial Nacional [National Road Network]. IDE Chile.
  • Pellicani R, Van Westen CJ, Spilotro G. 2014. Assessing landslide exposure in areas with limited landslide information. Landslides. 11(3):463–480.
  • Peña-Cortéz F, Tavares C, Mardones M. 1993. Las condiciones climáticas como factor de riesgo natural en la comuna de Talcahuano(1965-1992) [Climatic conditions as a natural risk factor in the municipality of Talcahuano (1965-1992)]. Rev Geográfica Chile Terra Aust. 38:83–107. Spanish.
  • Pereira S, Santos PP, Zêzere JL, Tavares AO, Garcia RAC, Oliveira SC. 2020. A landslide risk index for municipal land use planning in Portugal. Sci Total Environ. 735:139463.
  • Persichillo MG, Bordoni M, Meisina C, Bartelletti C, Barsanti M, Giannecchini R, D'Amato Avanzi G, Galanti Y, Cevasco A, Brandolini P, et al. 2017. Shallow landslides susceptibility assessment in different environments. Geomat Nat Hazards Risk. 8(2):748–771.
  • Petschko H, Brenning A, Bell R, Goetz J, Glade T. 2014. Assessing the quality of landslide susceptibility maps - case study Lower Austria. Nat Hazards Earth Syst Sci. 14(1):95–118.
  • Pourghasemi HR, Rahmati O. 2018. Prediction of the landslide susceptibility: which algorithm, which precision? Catena. 162:177–192.
  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F. 2018. A review of statistically-based landslide susceptibility models. Earth-Sci Rev. 180:60–91.
  • Rojas C, Pino J, Basnou C, Vivanco M. 2013. Assessing land-use and -cover changes in relation to geographic factors and urban planning in the metropolitan area of Concepción (Chile). Implications for biodiversity conservation. Appl Geogr. 39:93–103.
  • Shano L, Raghuvanshi TK, Meten M. 2020. Landslide susceptibility evaluation and hazard zonation techniques – a review. Geoenviron Disasters. 7(1):1–19.
  • Süzen ML, Kaya BŞ. 2012. Evaluation of environmental parameters in logistic regression models for landslide susceptibility mapping. Int J Digit Earth. 5(4):338–355.
  • van Westen CJ, Castellanos E, Kuriakose SL. 2008. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol. 102(3–4):112–131.
  • van Westen CJ, van Asch TWJ, Soeters R. 2006. Landslide hazard and risk zonation - Why is it still so difficult? Bull Eng Geol Environ. 65(2):167–184.
  • Vorpahl P, Elsenbeer H, Märker M, Schröder B. 2012. How can statistical models help to determine driving factors of landslides? Ecol Modell. 239:27–39.
  • Zevenbergen L, Thorne C. 1987. Quantitative analysis of land surface topography. Earth Surf Process Landforms. 12(1):47–56.
  • Zweig MH, Campbell G. 1993. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem. 39(4):561–577.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.