254
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Raster-based method for building selection in the multi-scale representation of two-dimensional maps

ORCID Icon, ORCID Icon & ORCID Icon
Pages 6494-6518 | Received 11 Feb 2021, Accepted 09 Jun 2021, Published online: 29 Sep 2021

References

  • Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S. 2012. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell. 34 (11):2274–2282.
  • Ai T, Ke S, Yang M, Li J. 2017. Envelope generation and simplification of polylines using Delaunay triangulation. Int J Geogr Inf Sci. 31(2):297–319.
  • Ai T, Liu Y. 2003. Analysis and simplification of point cluster based on delaunay triangulation model. In: Li Z, Zhou Q, Kainz, W, editors. Advances in spatial analysis and decision making. London: Taylor & Francis; p. 9–18.
  • Ai T, Liu Y, Chen J. 2006. The hierarchical watershed partitioning and data simplification of river network. Progress in spatial data handling. Berlin: Springer; p. 617–632.
  • Ai T, Yin H, Shen Y, Yang M, Wang L. 2019. A formal model of neighborhood representation and applications in urban building aggregation supported by Delaunay triangulation. PLoS One. 14(7):e0218877.
  • Ai T, Zhang X, Zhou Q, Yang M. 2015. A vector field model to handle the displacement of multiple conflicts in building generalization. Int J Geogr Inf Sci. 29(8):1310–1331.
  • Benz SA, Weibel R. 2014. Road network selection for medium scales using an extended stroke–mesh combination algorithm. Cartogr Geogr Inf Sci. 41(4):323–339.
  • Bergh M, Boix X, Roig G, Capitani B, Gool LV. 2012. Seeds: superpixels extracted via energy-driven sampling. Proc ECCV. 7578:13–26.
  • Bjørke JT. 1996. Framework for entropy-based map evaluation. Cartogr Geogr Inf Syst. 23(2):78–95.
  • Burghardt D, Cecconi A. 2007. Mesh simplification for building typification. Int J Geogr Inf Sci. 21(3):283–298.
  • Buttenfield BP, Stanislawski LV, Brewer CA. 2011. Adapting generalization tools to physiographic diversity for the United States National hydrography dataset. Cartogr Geogr Inf Sci. 38(3):289–301.
  • Canny J. 1986. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 8(6):679–714.
  • Chen J, Hu Y, Li Z, Zhao R, Meng L. 2009. Selective omission of road features based on mesh density for automatic map generalization. Int J Geogr Inf Sci. 23(8):1013–1032.
  • Christophe S, Ruas A. 2002. Detecting building alignments for generalisation purposes. In Richardson DE, Oosterom PV, editors. Advances in spatial data handling. Berlin: Springer; p. 419–432.
  • Congalton RG. 1997. Exploring and evaluating the consequences of vector-to-raster and raster-to-vector conversion. Photogramm Eng Remote Sens. 63:425–434. .
  • Feng Y, Thiemann F, Sester M. 2019. Learning cartographic building generalization with deep convolutional neural networks. IJGI. 8(6):258.
  • Gong X, Wu F. 2016. A typification method for linear pattern in urban building generalisation. Geocarto Int. 1–19.
  • Haunert JH, Wolff A. 2010. Area aggregation in map generalisation by mixed-integer programming. Int J Geogr Inf Sci. 24(12):1871–1897.
  • Jiang B, Harrie L. 2004. Selection of streets from a network using self‐organizing maps. Trans GIS. 8(3):335–350.
  • Kadmon N. 1972. Automated selection of settlements in map generalisation. Cartogr J. 9(2):93–98.
  • Li C, Liu X, Wu W, Wu P. 2019. An automated method for the selection of complex railway lines that accounts for multiple feature constraints. Trans GIS. 23(6):1296–1316.
  • Li C, Wu W, Yin Y. 2018. Hierarchical elimination selection method of dendritic river network generalization. PLoS One. 13(12):e0208101.
  • Li Z, Chen J. 2015. Superpixel segmentation using linear spectral clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; p. 1356–1363.
  • Li Z, Su B. 1995. Algebraic models for feature displacement in the generalization of digital map data using morphological techniques. Cartogr Int J Geogr Inf Geovisualization. 32(3):39–56.
  • Li Z, Yan H, Ai T, Chen J. 2004. Automated building generalization based on urban morphology and Gestalt theory. Int J Geogr Inf Sci. 18(5):513–534.
  • Li Z, Zhou Q. 2012. Integration of linear and areal hierarchies for continuous multi‐scale representation of road networks. Int J Geogr Inf Sci. 26(5):855–880.
  • Li ZL. 1994. Mathematical morphology in digital generalization of raster map data. Cartography. 23(1):1–10.
  • Liu XJ, Zhan FB, Ai TH. 2010. Road selection based on Voronoi diagrams and “strokes” in map generalization. Int J Appl Earth Observ Geoinf. 12:S194–S202.
  • Lu X, Yan H, Li W, Li X, Wu F. 2019. An algorithm based on the weighted network Voronoi diagram for point cluster simplification. IJGI. 8(3):105.
  • Mazur RE, Castner HW. 1990. Horton’s ordering scheme and the generalization of river networks. Cartogr J. 27(2):104–112.
  • Peng W, Muller JC. 1996. A dynantic decision tree structure supporting urban road network automated generalization. Cartogr J. 33(1):5–10.
  • Peters S. 2013. Quadtree-and octree-based approach for point data selection in 2D or 3D. Ann GIS. 19(1):37–44.
  • Regnauld N. 2001. Contextual building typification in automated map generalization. Algorithmica. 30(2):312–333.
  • Sadahiro Y. 1997. Cluster perception in the distribution of point objects. Cartogr Int J Geogr Inf Geovisualization. 34(1):49–62.
  • Sester M. 2005. Optimization approaches for generalization and data abstraction. Int J Geogr Inf Sci. 19(8-9):871–897.
  • Sester M, Feng Y, Thiemann F. 2018. Building generalization using deep learning. Int Arch Photogramm Remote Sens Spatial Inf Sci (2018), 42:565–572.
  • Shen Y, Ai T, He Y. 2018a. A new approach to line simplification based on image processing: a case study of water area boundaries. ISPRS Int J Geo-Inf. 7 (2):41.
  • Shen Y, Ai T, Li C. 2019b. A simplification of urban buildings to preserve geometric properties using superpixel segmentation. Int J Appl Earth Obs Geoinf. 79:162–174.
  • Shen Y, Ai T, Li J, Huang L, Li W. 2020. A progressive method for the collapse of river representation considering geographical characteristics. Int J Digital Earth. 13(12):1366–1325.
  • Shen Y, Ai T, Li W, Yang M, Feng Y. 2019a. A polygon aggregation method with global feature preservation using superpixel segmentation. Comput Environ Urban Syst. 75:117–131.
  • Shen Y, Ai T, Wang L, Zhou J. 2018b. A new approach to simplifying polygonal and linear features using superpixel segmentation. Int J Geogr Inf Sci. 32(10):2023–2054.
  • Stanislawski LV. 2009. Feature pruning by upstream drainage area to support automated generalization of the United States National Hydrography Dataset. Comput Environ Urban Syst. 33(5):325–333.
  • Stanislawski LV, Buttenfield BP. 2011. Hydrographic generalization tailored to dry mountainous regions. Cartogr Geogr Inf Sci. 38(2):117–125.
  • Su B, Li Z, Lodwick G, Muller JC. 1997. Algebraic models for the aggregation of area features based upon morphological operators. Int J Geogr Inf Sci. 11(3):233–246.
  • Thomson RC, Brooks R. 2000. Efficient generalization and abstraction of network data using perceptual grouping. Proceedings of the 5th International Conference on Geo-Computation, Chatham, p. 23–25.
  • Töpfer F, Pillewizer W. 1966. The principles of selection. Cartogr J. 3(1):10–16.
  • Van Kreveld M, Van Oostrum R, Snoeyink J. 1997. Efficient settlement selection for interactive display. Proc Auto-Carto. 13:287–296.
  • Wang L, Ai T, Shen Y, Li J. 2020. The isotropic organization of DEM structure and extraction of valley lines using hexagonal grid. Trans GIS. 24(2):483–507. Doi:.
  • Wang L, Guo Q, Liu Y, Sun Y, Wei Z. 2017. Contextual building selection based on a genetic algorithm in map generalization. IJGI. 6(9):271.
  • Wang X, Burghardt D. 2019. A mesh-based typification method for building groups with grid patterns. IJGI. 8(4):168.
  • Yan H, Li J. 2013. An approach to simplifying point features on maps using the multiplicative weighted voronoi diagram. J Spat Sci. 58(2):291–304.
  • Yan H, Weibel R. 2008. An algorithm for point cluster generalization based on the voronoi diagram. Comput Geosci. 34(8):939–954.
  • Yang M. 2014. Research on feature selection considering spatial context in map generalization and its application. Acta Geodaetica et Cartographica Sinica. 43(8):877.
  • Zhou Q, Li Z. 2016. Empirical determination of geometric parameters for selective omission in a road network. Int J Geogr Inf Sci. 30(2):263–290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.