425
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Deep semantic segmentation for detecting eucalyptus planted forests in the Brazilian territory using sentinel-2 imagery

, , , , &
Pages 6538-6550 | Received 25 Mar 2021, Accepted 09 Jun 2021, Published online: 28 Jun 2021

References

  • Associação Brasileira de Árvores 2019. Brazilian Tree Industry Annual Report 2019. Brasília, Federal District, Brazil. https://www.iba.org/datafiles/publicacoes/relatorios/iba-relatorioanual2019.pdf.
  • Associação Brasileira de Árvores 2020. Brazilian Tree Industry Annual Report 2020. Brasília, Federal District, Brazil. https://iba.org/datafiles/publicacoes/relatorios/relatorio-iba-2020.pdf.
  • Baranowski K, Taylor T, Lambert B, Bharti N. 2020. Application of reflectance ratios on high-resolution satellite imagery to remotely identify eucalypt vegetation. Remote Sens. 12(24):4079.
  • Binkley D, Campoe OC, Alvares CA, Carneiro RL, Stape JL. 2020. Variation in whole-rotation yield among Eucalyptus genotypes in response to water and heat stresses: the TECHS project. For Ecol Manage. 462:117953.
  • Brodrick PG, Davies AB, Asner GP. 2019. Uncovering ecological patterns with convolutional neural networks. Trends Ecol Evol. 34(8):734–745.
  • Carvalho O. d, de Carvalho Júnior OAA, Albuquerque AO, de Bem PP, de Silva CR, Ferreira PHG, de Moura RdS, Gomes RAT, Guimarães RF, Borges DL. 2020. Instance segmentation for large, multi-channel remote sensing imagery using Mask-RCNN and a mosaicking approach. Remote Sens. 13(1):39.
  • Cerqueria Neto SPG. 2012. Três décadas de eucalipto no extremo sul da Bahia. GEOUSP – Espaço e Tempo. 31:55–68.
  • Chaurasia A, Culurciello E. 2017. LinkNet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Vis Commun Image Process. Vol. 2018 [place unknown]. Piscataway, NJ: IEEE; p. 1–4. http://ieeexplore.ieee.org/document/8305148/.
  • Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. 2018. DeepLab: semantic image segmentation with deep convolutional Nets, Atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell. 40(4):834–848.
  • Da Costa MVCV, de Carvalho OLF, Orlandi AG, Hirata I, De Albuquerque AO, e Silva FV, Guimarães RF, Gomes RAT, de Júnior OAC. 2021. Remote sensing for monitoring photovoltaic solar plants in Brazil using deep semantic segmentation. Energies. 14(10):2960.
  • de Albuquerque AO, de Carvalho OLF, e Silva CR, de Bem PP, Trancoso Gomes RA, Borges DL, Guimarães RF, Pimentel CMM, de Carvalho Júnior OA. 2021. Instance segmentation of center pivot irrigation systems using multi-temporal SENTINEL-1 SAR images. Remote Sens Appl Soc Environ. 23:100537.
  • de Albuquerque AO, de Carvalho Júnior OA, Carvalho OLF, de de Bem PP, Ferreira PHG, de Moura RdS, Silva CR, Trancoso Gomes RA, Fontes Guimarães R. 2020. Deep semantic segmentation of center pivot irrigation systems from remotely sensed data. Remote Sens. 12(13):2159.
  • de Bem PP, de Carvalho Júnior OAA, de Carvalho OLF, Gomes RAT, Fontes Guimarães R, Guimarães RF. 2020. Performance analysis of deep convolutional autoencoders with different patch sizes for change detection from burnt areas. Remote Sens. 12(16):2576.
  • Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P, et al. 2012. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens Environ. 120:25–36.
  • Fan T, Wang G, Li Y, Wang H. 2020. Ma-net: a multi-scale attention network for liver and tumor segmentation. IEEE Access. 8:179656–179665.
  • Forstmaier A, Shekhar A, Chen J. 2020. Mapping of eucalyptus in Natura 2000 areas using Sentinel 2 imagery and artificial neural networks. Remote Sens. 12(14):2176.
  • Goodwin N, Turner R, Merton R. 2005. Classifying Eucalyptus forests with high spatial and spectral resolution imagery: an investigation of individual species and vegetation communities. Aust J Bot. 53(4):337.
  • He K, Zhang X, Ren S, Sun J. 2016. deep residual learning for image recognition. In: 2016 IEEE Conf Comput Vis Pattern Recognit. Vol. 45. Las Vegas, NV, USA. Piscataway, NJ: IEEE; p. 770–778. http://ieeexplore.ieee.org/document/7780459/.
  • Hoeser T, Kuenzer C. 2020. Object detection and image segmentation with deep learning on earth observation data: a review-part I: evolution and recent trends. Remote Sens. 12(10):1667.
  • [IBGE] Instituto Brasileiro de Geografia e Estatística. 2002. Mapa de clima do Brasil. [accessed 2021 Mar 24]. http://mapas.ibge.gov.br/tematicos.html.
  • [IBGE] Instituto Brasileiro de Geografia e Estatística. 2006. Unidades de Relevo 1:5.000.000 | 2006. [accessed 2021 Mar 24]. https://www.ibge.gov.br/geociencias/informacoes-ambientais/geomorfologia/15827-unidades-de-relevo.html?=&t=downloads.
  • Kattenborn T, Leitloff J, Schiefer F, Hinz S. 2021. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J Photogramm Remote Sens. 173:24–49.
  • Lecun Y, Bottou L, Bengio Y, Haffner P. 1998. Gradient-based learning applied to document recognition. Proc IEEE. 86(11):2278–2324.
  • Lin T-Y, Dollar P, Girshick R, He K, Hariharan B, Belongie S. 2017. Feature pyramid networks for object detection. In: 2017 IEEE Conf Comput Vis Pattern Recognit. Honolulu, HI, USA. Piscataway, NJ: IEEE; p. 936–944. http://arxiv.org/abs/1612.03144.
  • Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X, Pietikäinen M. 2020. Deep learning for generic object detection: a survey. Int J Comput Vis. 128(2):261–318.
  • Long J, Shelhamer E, Darrell T. 2015. Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). p. 3431–3440.
  • Ma L, Liu Y, Zhang X, Ye Y, Yin G, Johnson BA. 2019. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J Photogramm Remote Sens. 152:166–177.
  • McMahon DE, Jackson RB. 2019. Management intensification maintains wood production over multiple harvests in tropical Eucalyptus plantations. Ecol Appl. 29(4):e01879.
  • Mokochinski JB, Mazzafera P, Sawaya ACHF, Mumm R, de Vos RCH, Hall RD. 2018. Metabolic responses of Eucalyptus species to different temperature regimes. J Integr Plant Biol. 60(5):397–411.
  • Nogueira K, Penatti OAB, dos Santos JA. 2017. Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recognit. 61:539–556.
  • Payn T, Carnus JM, Freer-Smith P, Kimberley M, Kollert W, Liu S, Orazio C, Rodriguez L, Silva LN, Wingfield MJ. 2015. Changes in planted forests and future global implications. For Ecol Manage. 352:57–67.
  • Penín L, López M, Santos V, Alonso JL, Parajó JC. 2020. Technologies for Eucalyptus wood processing in the scope of biorefineries: a comprehensive review. Bioresour Technol. 311:123528.
  • Ronneberger O, Fischer P, Brox T. 2015. U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A, editors. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). Vol. 9351. Cham: Springer; p. 234–241. .
  • Shang X, Chisholm LA. 2014. Classification of Australian native forest species using hyperspectral remote sensing and machine-learning classification algorithms. IEEE J Sel Top Appl Earth Observ Remote Sens. 7(6):2481–2489.
  • Sibanda M, Buthelezi S, Ndlovu HS, Mothapo MC, Mutanga O. 2021. Mapping the Eucalyptus spp. woodlots in communal areas of Southern Africa using Sentinel-2 Multi-Spectral Imager data for hydrological applications. Phys Chem Earth. 122:102999.
  • Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. .
  • Szegedy C. Wei L, Yangqing J, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. 2015. Going deeper with convolutions. In: 2015 IEEE Conf Comput Vis Pattern Recognit. Vol. 91. [place unknown]. Piscataway, NJ: IEEE; p. 1–9. http://ieeexplore.ieee.org/document/7298594/.
  • Tan M, Le QV. 2019. EfficientNet: rethinking model scaling for convolutional neural networks. arXiv. arxiv:1905.11946
  • Trisasongko BH, Paull D. 2020. A review of remote sensing applications in tropical forestry with a particular emphasis in the plantation sector. Geocarto Int. 35(3):317–339.
  • Xie S, Girshick R, Dollar P, Tu Z, He K. 2017. Aggregated Residual Transformations for Deep Neural Networks. In: 2017 IEEE Conf Comput Vis Pattern Recognit. Honolulu, HI, USA. Piscataway, NJ: IEEE; p. 5987–5995. https://github.com/facebookresearch/ResNeXt%0Ahttp://arxiv.org/abs/1611.05431v2.
  • Yakubovskiy P. 2020. Segmentation Models Pytorch. GitHub Repos.
  • Yi Y, Zhang Z, Zhang W, Zhang C, Li W, Zhao T. 2019. Semantic segmentation of urban buildings from VHR remote sensing imagery using a deep convolutional neural network. Remote Sens. 11(15):1774.
  • Zhang Y, Qiu Z, Yao T, Liu D, Mei T. 2018. Fully Convolutional adaptation networks for semantic segmentation. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 6810–6818.
  • Zhang L, Zhang L, Du B. 2016. Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Geosci Remote Sens Mag. 4(2):22–40.
  • Zhu XX, Tuia D, Mou L, Xia G, Zhang L, Xu F, Fraundorfer F. 2017. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci Remote Sens Mag. 5(4):8–36.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.