537
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Spatio-temporal analysis and simulation of land cover changes and their impacts on land surface temperature in urban agglomeration of Bisha Watershed, Saudi Arabia

, , , , , & show all
Pages 7591-7617 | Received 03 Mar 2021, Accepted 09 Sep 2021, Published online: 22 Sep 2021

References

  • Abulfatih HA. 1981. Wild Plants From Abha & the Surrounding Areas:: Amazon.com: Books. Saudia Publ Distrib House [Internet]. [cited 2021 Mar 14]. https://www.amazon.com/Wild-Plants-Abha-Surrounding-Areas/dp/B00113M1GQ
  • Ahmed HA, Singh SK, Kumar M, Maina MS, Dzwairo R, Lal D. 2020. Impact of urbanization and land cover change on urban climate: case study of Nigeria. Urban Clim. 32:100600.
  • Al Jarah SH, Zhou B, Abdullah RJ, Lu Y, Yu W. 2019. Urbanization and urban sprawl issues in city structure: a case of the Sulaymaniah Iraqi Kurdistan region. Sustain. 1:1–11. https://doi.org/10.1007/s41748-017-0028-4.
  • Alahmadi M, Atkinson PM. 2019. Three-fold urban expansion in Saudi Arabia from 1992 to 2013 observed using calibrated DMSP-OLS night-time lights imagery. Remote Sens. 11(19):2266.
  • Alsubih M, Mallick J, Talukdar S, Salam R, AlQadhi S, Fattah MA, Thanh NV. 2021. An investigation of the short-term meteorological drought variability over Asir Region of Saudi Arabia. Theor Appl Climatol. 145(1–2):597–617. [cited 2021 Sep 8]. https://doi.org/10.1007/s00704-021-03647-4.
  • Arshad M. 2015. Investigating the impact of anthropogenic activities on Lake Abha through remote sensing. Am J Sci Technol. 2(1):10–17.
  • Arshad M, Khedher KM, Eid EM, Aina YA. 2021. Evaluation of the urban heat island over Abha-Khamis Mushait tourist resort due to rapid urbanisation in Asir, Saudi Arabia. Urban Clim. 36:100772.
  • Barrington-Leigh C, Millard-Ball A. 2015. A century of sprawl in the United States. Proc Natl Acad Sci U S A. 112(27):8244–8249.
  • Belloumi M, Alshehry AS. 2016. The impact of urbanization on energy intensity in Saudi Arabia. Sustain. 8(4):375.
  • Bhat PA, Shafiq M. u, Mir AA, Ahmed P. 2017. Urban sprawl and its impact on landuse/land cover dynamics of Dehradun City, India. Int J Sustain Built Environ. 6(2):513–521.
  • Bhatta B. 2010. Analysis of urban growth and sprawl from remote sensing data. Berlin, Heidelberg: Springer-Verlag. https://www.springer.com/gp/book/9783642052989.
  • Borana SL, Vaishnav A, Yadav SK, Parihar SK. 2020. urban growth assessment using remote sensing, gis and shannon’s entropy model: a case study of Bhilwara City, Rajasthan. In: Proceedings of 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things, ICETCE 2020.
  • Bouaziz M, Eisold S, Guermazi E. 2017. Semiautomatic approach for land cover classification: a remote sensing study for arid climate in southeastern Tunisia. Euro-Mediterranean J Environ Integr [Internet]. [cited 2021 Mar 14]; 2:1–7. https://earthexplorer.usgs.gov
  • Caselles V, Sobrino JA. 1989. Determination of frosts in orange groves from NOAA-9 AVHRR data. Remote Sens Environ. 29:135–146.
  • Chen W, Huang H, Dong J, Zhang Y, Tian Y, Yang Z. 2018. Social functional mapping of urban green space using remote sensing and social sensing data. ISPRS J Photogramm Remote Sens. 146:436–452.
  • Chen L, Ren C, Zhang B, Wang Z, Liu M. 2018. Quantifying urban land sprawl and its driving forces in Northeast China from 1990 to 2015. Sustain. 10(1):1–18.
  • Chen X, Yu SX, Zhang YP. 2013. Evaluation of spatiotemporal dynamics of simulated land use/cover in China using a probabilistic cellular automata-Markov model. Pedosphere. 23(2):243–255.
  • Chen M, Zhang H, Liu W, Zhang W. 2014. The global pattern of urbanization and economic growth: Evidence from the last three decades. PLoS One. 9(8):e103799.
  • Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A. 2019. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ. 651(Pt 2):2087–2096.
  • Dadashpoor H, Azizi P, Moghadasi M. 2019. Analyzing spatial patterns, driving forces and predicting future growth scenarios for supporting sustainable urban growth: Evidence from Tabriz metropolitan area, Iran. Sustain Cities Soc. 47:101502.
  • Dinda S, Das K, Chatterjee ND, Ghosh S. 2019. Integration of GIS and statistical approach in mapping of urban sprawl and predicting future growth in Midnapore town, India. Model Earth Syst Environ. 5:331–352.
  • Edan MH, Maarouf RM, Hasson J. 2021. Predicting the impacts of land use/land cover change on land surface temperature using remote sensing approach in Al Kut, Iraq. Phys Chem Earth Parts A/B/C. 123:103012.
  • Falah N, Karimi A, Harandi AT. 2020. Urban growth modeling using cellular automata model and AHP (case study: Qazvin city). Model Earth Syst Environ. 6:235–248.
  • Fang S, Gertner GZ, Sun Z, Anderson AA. 2005. The impact of interactions in spatial simulation of the dynamics of urban sprawl. Landsc Urban Plan. 73:294–306.
  • Feng Y, Cai Z, Tong X, Wang J, Gao C, Chen S, Lei Z. 2018. Urban growth modeling and future scenario projection using cellular automata (CA) models and the R package optimx. IJGI. 7(10):387.
  • Fertner C, Jørgensen G, Sick Nielsen TA, Bernhard Nilsson KS. 2016. Urban sprawl and growth management – drivers, impacts and responses in selected European and US cities. Futur Cities Environ. 2:9.
  • Gao J, O’Neill BC. 2020. Mapping global urban land for the 21st century with data-driven simulations and shared socioeconomic pathways. Nat Commun. 11(1):2302–2312.
  • Gidey E, Dikinya O, Sebego R, Segosebe E, Zenebe A. 2017a. Cellular automata and Markov Chain (CA_Markov) model-based predictions of future land use and land cover scenarios (2015–2033) in Raya, Northern Ethiopia. Model Earth Syst Environ. 3:1245–1262.
  • Gidey E, Dikinya O, Sebego R, Segosebe E, Zenebe A. 2017b. Modeling the Spatio-temporal dynamics and evolution of land use and land cover (1984–2015) using remote sensing and GIS in Raya, Northern Ethiopia. Model Earth Syst Environ. 3(4):1285–1301.
  • Gounaridis D, Chorianopoulos I, Symeonakis E, Koukoulas S. 2019. A Random Forest-Cellular Automata modelling approach to explore future land use/cover change in Attica (Greece), under different socio-economic realities and scales. Sci Total Environ. 646:320–335.
  • Govindaraju RS. 2000. Artificial neural networks in hydrology. I: Preliminary concepts. Journal of Hydrologic Engineering, 5(2):115–123.
  • Halmy MWA, Gessler PE, Hicke JA, Salem BB. 2015. Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Appl Geogr. 63:101–112.
  • Hua L, Zhang X, Chen X, Yin K, Tang L. 2017. A feature-based approach of decision tree classification to map time series urban land use and land cover with landsat 5 TM and landsat 8 OLI in a Coastal City, China. IJGI. 6(11):331.
  • Ibrahim Mahmoud M, Duker A, Conrad C, Thiel M, Shaba Ahmad H. 2016. Analysis of settlement expansion and urban growth modelling using geoinformation for assessing potential impacts of urbanization on climate in Abuja City, Nigeria. Remote Sens. 8(3):220.
  • Jensen JR. 2009. Remote sensing of the environment: An earth resource perspective 2/e. Pearson Education India.
  • Jin M, Zhang H. 2020. Investigating urban land dynamic change and its spatial determinants in Harbin city, China. Eur J Remote Sens. 54:155–166.
  • Kafy AA, Rahman MS, Islam M, Al Rakib A, Islam MA, Khan MHH, Sikdar MS, Sarker MHS, Mawa J, Sattar GS. 2021. Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh. Sustain Cities Soc. 64:102542.
  • Kamusoko C, Aniya M. 2007. Land use/cover change and landscape fragmentation analysis in the Bindura District, Zimbabwe. L. Land Degrad Dev. 18(2):221–233.
  • Karimi F, Sultana S, Babakan AS, Suthaharan S. 2019. Urban expansion modeling using an enhanced decision tree algorithm. Geoinformatica. 1–17. https://doi.org/10.1007/s10707-019-00377-8.
  • Kavzoglu T, Colkesen I. 2009. A kernel functions analysis for support vector machines for land cover classification. Int J Appl Earth Obs Geoinf. 11(5):352–359.
  • Keshtkar H, Voigt W, Alizadeh E. 2017. Land-cover classification and analysis of change using machine-learning classifiers and multi-temporal remote sensing imagery. Arab J Geosci. 10: 154, 1–15.
  • Kiptala JK, Mohamed Y, Mul ML, Cheema MJM, Van der Zaag P. 2013. Land use and land cover classification using phenological variability from MODIS vegetation in the Upper Pangani River Basin, Eastern Africa. Phys Chem Earth Parts A/B/C. 66:112–122.
  • Lee S, Hong SM, Jung HS. 2017. A support vector machine for landslide susceptibility mapping in Gangwon Province, Korea. Sustainability. 9(1):48.
  • Li B, Shi X, Wang H, Qin M. 2020. Analysis of the relationship between urban landscape patterns and thermal environment: a case study of Zhengzhou City, China. Environ Monit Assess. 192(8):540.
  • Liu Y, Din S. u, Jiang Y. 2020. Urban growth sustainability of Islamabad, Pakistan, over the last 3 decades: a perspective based on object-based backdating change detection. GeoJournal. 86:2035–2055.
  • Liu H, Gong P, Wang J, Clinton N, Bai Y, Liang S. 2020. Annual dynamics of global land cover and its long-term changes from 1982 to 2015. Earth Syst Sci Data. 12(2):1217–1243.
  • Losiri C, Nagai M, Ninsawat S, Shrestha RP. 2016. Modeling urban expansion in Bangkok Metropolitan region using demographic-economic data through cellular Automata-Markov Chain and Multi-Layer Perceptron-Markov Chain models. Sustain. 8(7):686.
  • Lu Q, Chang NB, Joyce J. 2018. Predicting long-term urban growth in Beijing (China) with new factors and constraints of environmental change under integrated stochastic and fuzzy uncertainties. Stoch Environ Res Risk Assess. 32(7):2025–2044. https://doi.org/10.1007/s00477-017-1493-x
  • Lu Q, Joyce J, Imen S, Chang N. Bin 2019. Linking socioeconomic development, sea level rise, and climate change impacts on urban growth in New York City with a fuzzy cellular automata-based Markov chain model. Environ Plan B Urban Anal City Sci. 46:551–572.
  • Macintyre HL, Heaviside C, Taylor J, Picetti R, Symonds P, Cai XM, Vardoulakis S. 2018. Assessing urban population vulnerability and environmental risks across an urban area during heatwaves – implications for health protection. Sci Total Environ. 610–611:678–690.
  • Mahato S, Pal S. 2021. Land surface thermal alteration and pattern simulation based on influencing factors of rural landscape. Geocarto International. :1–29. https://doi.org/10.1080/10106049.2021.1920634.
  • Maithani S. 2009. A neural network based urban growth model of an Indian city. J Indian Soc Remote Sens. 37(3):363–376.
  • Mallick J, Rahman A, Singh CK. 2013. Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi-India. Adv Sp Res. 52:639–655. https://doi.org/10.1016/j.asr.2013.04.025.
  • Melgani F, Bruzzone L. 2004. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sensing. 42(8):1778–1790.
  • Ministry of Municipal and Rural Affairs. 2019. Future Saudi Cities Programme City Profiles Series: Abha. Nations Human Settlements Programme, United Nations Human Settlements Programme (UN-Habitat): 1–20.
  • Mishra VN, Rai PK, Prasad R, Punia M, Nistor MM. 2018. Prediction of spatio-temporal land use/land cover dynamics in rapidly developing Varanasi district of Uttar Pradesh, India, using geospatial approach: a comparison of hybrid models. Appl Geomat. 10(3):257–276.
  • Mohamed A, Worku H. 2020. Simulating urban land use and cover dynamics using cellular automata and Markov chain approach in Addis Ababa and the surrounding. Urban Clim. 31:100545.
  • Moradi F, Kaboli HS, Lashkarara B. 2020. Projection of future land use/cover change in the Izeh-Pyon Plain of Iran using CA-Markov model. Arab J Geosci. 13 998, 1–17.
  • Mountrakis G, Im J, Ogole C. 2011. Support vector machines in remote sensing: A review. ISP RS J Photogramm Remote Sens. 66:247–259.
  • Mumtaz F, Tao Y, de Leeuw G, Zhao L, Fan C, Elnashar A, Bashir B, Wang G, Li L, Naeem S, et al. 2020. Modeling spatio-temporal land transformation and its associated impacts on land surface temperature (LST). Remote Sens. 12(18):2987.
  • Myint SW, Wentz EA, Brazel AJ, Quattrochi DA. 2013. The impact of distinct anthropogenic and vegetation features on urban warming. Landsc Ecol 2013 285 [Internet]. [cited 2021 Sep 16]; 28:959–978. https://doi.org/10.1007/s10980-013-9868-y
  • Nath B, Wang Z, Ge Y, Islam K, Singh RP, Niu Z. 2020. Land use and land cover change modeling and future potential landscape risk assessment using Markov-CA model and analytical hierarchy process. IJGI. 9(2):134.
  • Ningrum W. 2018. Urban heat island towards urban climate. IOP Conf Ser Earth Environ Sci. 118(1):012048.
  • Plocoste T, Jacoby-Koaly S, Molinié J, Petit RH. 2014. Evidence of the effect of an urban heat island on air quality near a landfill. Urban Clim. 10:745–757.
  • Quattrochi DA, Luvall JC. 1999. Thermal infrared remote sensing for analysis of landscape ecological processes: methods and applications. Landsc Ecol 1999 146 [Internet]. [cited 2021 Sep 16]; 14:577–598. Available from: https://doi.org/10.1023/A:1008168910634
  • Qian Y, Zhou W, Yan J, Li W, Han L. 2014. Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sens. 7(1):153–168.
  • Rahman A, Aggarwal SP, Netzband M, Fazal S. 2011. Monitoring urban sprawl using remote sensing and GIS techniques of a fast growing urban centre, India. IEEE J Sel Top Appl Earth Obs Remote Sens. 4:56–64.
  • Rahman M, Yuksel M, Quint T. 2018. October. Regulating freeriding in inter-operator spectrum sharing. In 2018 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN) (pp. 1–10). IEEE.
  • Rahnama MR. 2021. Forecasting land-use changes in Mashhad Metropolitan area using Cellular Automata and Markov chain model for 2016-2030. Sustain Cities Soc. 64:102548.
  • Ratner B. 2009. The correlation coefficient: Its values range between + 1/− 1, or do they? J Target Meas Anal Mark. 17(2):139–142.
  • Richts A, Vrba J. 2016. Groundwater resources and hydroclimatic extremes: mapping global groundwater vulnerability to floods and droughts. Environ Earth Sci. 75(10):926.
  • Rimal B, Sloan S, Keshtkar H, Sharma R, Rijal S, Shrestha UB. 2020. Patterns of historical and future urban expansion in Nepal. Remote Sensing. 12(4):628.
  • Rimal B, Zhang L, Keshtkar H, Haack BN, Rijal S, Zhang P. 2018. Land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and markov chain. IJGI. 7(4):154.
  • Rosenfield GH, Fitzpatrick-Lins K. 1986. A coefficient of agreement as a measure of thematic classification accuracy. Photogramm Eng Remote Sensing. 52(2):223–227.
  • Roy S, Sen Rahman A, Ahmed S, Shahfahad, Ahmad IA. 2020. Alarming groundwater depletion in the Delhi Metropolitan Region: a long-term assessment. Environ Monit Assess. 192:620, 1–14.
  • Rubio E, Caselles V, Badenas C. 1997. Emissivity measurements of several soils and vegetation types in the 8–14, μm Wave band: Analysis of two field methods. Remote Sens Environ. 59:490–521.
  • Saeidi S, Mirkarimi SH, Mohammadzadeh M, Salmanmahiny A, Arrowsmith C. 2018. Designing an integrated urban growth prediction model: a scenario-based approach for preserving scenic landscapes. Geocarto International. 33(12):1381–1397.
  • Santamouris M, Ding L, Osmond P. 2019. Urban heat island mitigation. In: Decarbonising the built environment. Palgrave Macmillan, Singapore, p. 337–355.
  • Sarif M, Rimal B, Stork NE. 2020. Assessment of changes in land use/land cover and land surface temperatures and their impact on surface urban heat Island phenomena in the Kathmandu Valley (1988–2018). IJGI. 9(12):726.
  • Saudi Cities Report. 2019. Future Saudi Cities Programme. Ministry of Municipal and Rural Affairs, 2019 King Fahd National Library Cataloging-in-Publication Data. https://unhabitat.org/sites/default/files/2020/05/saudi_city_report.english.pdf. (Accessed 12 November 2020).
  • SCDSI. 2018. Population Distribution by Gender and (Saudis and Non-Saudis) by Areas. Saudi Central Department of Statistics & Information. http://www.cdsi.gov.sa/ (Accessed November 26, 2019)
  • Schneider A. 2012. Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approach. Remote Sens Environ. 124:689–704.
  • Seto KC, Güneralp B, Hutyra LR. 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci U S A. 109(40):16083–16088.
  • Seto KC, Sánchez-Rodríguez R, Fragkias M. 2010. The new geography of contemporary urbanization and the environment. Annu Rev Environ Resour. 35(167–94):1–34.
  • Shao Z, Sumari NS, Portnov A, Ujoh F, Musakwa W, Mandela PJ. 2020. Urban sprawl and its impact on sustainable urban development: a combination of remote sensing and social media data. Geo-Spatial Inf Sci. https://doi.org/10.1080/10095020.2020.1787800.
  • Shin HK, Ahn YH, Lee SH, Kim HY. 2019. Digital vision based concrete compressive strength evaluating model using deep convolutional neural network. Comput Mater Contin. 61:911–928.
  • Siddiqui A, Siddiqui A, Maithani S, Jha AK, Kumar P, Srivastav SK. 2018. Urban growth dynamics of an Indian metropolitan using CA Markov and Logistic Regression. Egypt J Remote Sens Sp Sci. 21:229–236.
  • Siddiqui A, Siddiqui A, Maithani S, Jha AK, Kumar P, Srivastav SK. 2018. Urban growth dynamics of an Indian metropolitan using CA Markov and Logistic Regression. Egypt J Remote Sens Space Sci. 21(3):229–236. https://doi.org/10.1016/j.ejrs.2017.11.006.
  • Song W, Deng X. 2017. Landuse/land-cover change and ecosystem service provision in China. Sci Total Environ. 576:705–719.
  • Song XP, Hansen MC, Stehman SV, Potapov PV, Tyukavina A, Vermote EF, Townshend JR. 2018. Global land change from 1982 to 2016. Nature. 560(7720):639–643.
  • Stehman S. 1996. Estimating the kappa coefficient and its variance under stratified random sampling. Photogramm Eng Remote Sens. 62(4):401–407.
  • Stocker TF, Qin D, Plattner GK, et al. 2013. Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY (a cura di).
  • Sultana S, Satyanarayana ANV. 2020. Impact of urbanisation on urban heat island intensity during summer and winter over Indian metropolitan cities. Environ Monit Assess. 191(Suppl. 3):789
  • Talukdar S, Singha P, Mahato S, Pal S, Liou YA, Rahman A. 2020. Land-use land-cover classification by machine learning classifiers for satellite observations—a review. Remote Sensing. 12(7):1135.
  • Ullah S, Tahir AA, Akbar TA, Hassan QK, Dewan A, Khan AJ, Khan M. 2019. Remote sensing-based quantification of the relationships between land use land cover changes and surface temperature over the Lower Himalayan Region. Sustainability. 11(19):5492.
  • United Nations. 2018. World Urbanization Prospects: 2018 revision. https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html (Accessed 12 November 2020).
  • Valor E, Caselles V. 1996. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sens Environ. 57:167–184.
  • Varoonchotikul P. 2003. Flood forecasting using artificial neural networks. The Netherlands: Taylor & Francis; p. 102.
  • Vázquez-Quintero G, Solís-Moreno R, Pompa-García M, Villarreal-Guerrero F, Pinedo-Alvarez C, Pinedo-Alvarez A. 2016. Detection and projection of forest changes by using the Markov Chain Model and cellular automata. Sustainability. 8(3):236.
  • Vezzoli R, Mercogliano P, Pecora S, Zollo AL, Cacciamani C. 2015. Hydrological simulation of Po River (North Italy) discharge under climate change scenarios using the RCM COSMO-CLM. Sci Total Environ. 521-522:346–358.
  • Wang S, Gao S, Li S, Feng K. 2020. Strategizing the relation between urbanization and air pollution: Empirical evidence from global countries. J Clean Prod. 243:1–10.
  • Waske B, Benediktsson JA. 2007. Fusion of support vector machines for classification of multisensor data. IEEE Trans Geosci Remote Sensing. 45(12):3858–3866.
  • Wu Y, Li S, Yu S. 2016. Monitoring urban expansion and its effects on land use and land cover changes in Guangzhou city, China. Environ Monit Assess. 188(1):54
  • Yatoo SA, Sahu P, Kalubarme MH, Kansara BB. 2020. Monitoring land use changes and its future prospects using cellular automata simulation and artificial neural network for Ahmedabad city, India. GeoJournal. :1–22. https://doi.org/10.1007/s10708-020-10274-5.
  • Yue W, Liu Y, Fan P. 2013. Measuring urban sprawl and its drivers in large Chinese cities: The case of Hangzhou. Land Use Policy. 31:358–370.
  • Yue W, Xu L. 2013. Thermal environment effect of urban water landscape. Shengtai Xuebao/Acta Ecologica Sinica. 33(6):1852–1859.
  • Zhou Y, Varquez ACG, Kanda M. 2019. High-resolution global urban growth projection based on multiple applications of the SLEUTH urban growth model. Sci Data. 6(1):34.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.