597
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Coupling Earth observation and eddy covariance data in light-use efficiency based model for estimation of forest productivity

ORCID Icon, ORCID Icon, , &
Pages 7716-7732 | Received 17 May 2021, Accepted 16 Sep 2021, Published online: 28 Sep 2021

References

  • Ahl DE, Gower ST, Mackay DS, Burrows SN, Norman JM, Diak GR. 2004. Heterogeneity of light use efficiency in a northern Wisconsin forest: implications for modeling net primary production with remote sensing. Remote Sens Environ. 93(1–2):168–178.
  • Ahongshangbam J, Patel NR, Kushwaha SPS, Watham T, Dadhwal VK. 2016. Estimating gross primary production of a forest plantation area using Eddy covariance data and satellite imagery. J Indian Soc Remote Sens. 44(6):895–904.
  • Anav A, Friedlingstein P, Beer C, Ciais P, Harper A, Jones C, Murray-Tortarolo G, Papale D, Parazoo NC, Peylin P, et al. 2015. Spatiotemporal patterns of terrestrial gross primary production: a review. Rev Geophys. 53(3):785–818.
  • Bartlett DS, Whiting GJ, Hartman JM. 1989. Use of vegetation indices to estimate indices to estimate intercepted solar radiation and net carbon dioxide exchange of a grass canopy. Remote Sens Environ. 30(2):115–128.
  • Berry J, Bjorkman O. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol. 31(1):491–543.
  • Bradford JB, Hicke JA, Lauenroth WK. 2005. The relative importance of light-use efficiency modifications from environmental conditions and cultivation for estimation of large-scale net primary productivity. Remote Sens Environ. 96(2):246–255.
  • Burba G. 2013. Eddy covariance method. Lincoln (NE): LI-COR Biosciences.
  • Cai W, Yuan W, Liang S, Zhang X, Dong W, Xia J, Fu Y, Chen Y, Liu D, Zhang Q. 2014. Improved estimations of gross primary production using satellite‐derived photosynthetically active radiation. J Geophys Res Biogeosci. 119(1):110–123.
  • Canadell JG, Mooney HA, Baldocchi DD, Berry JA, Ehleringer JR, Field CB, Gower ST, Hollinger DY, Hunt JE, Jackson RB, et al. 2000. Commentary: carbon metabolism of the terrestrial biosphere: a multitechnique approach for improved understanding. Ecosystem. 3(2):115–130.
  • Chapin FS, Matson PA, Mooney HA. 2002. Principles of terrestrial ecosystem ecology. New York (NY): Springer-Verlag; p. 298–300.
  • Chen J, Shen M, Kato T. 2009. Diurnal and seasonal variations in light-use efficiency in an alpine meadow ecosystem: causes and implications for remote sensing. J Plant Ecol. 2(4):173–185.
  • Chen Y, Xia J, Liang S, Feng J, Fisher JB, Li X, Li X, Liu S, Ma Z, Miyata A, et al. 2014. Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China. Remote Sens Environ. 140:279–293.
  • Coops NC, Ferster CJ, Waring RH, Nightingale J. 2009. Comparison of three models for predicting gross primary production across and within forested ecoregions in the contiguous United States. Remote Sens. Environ. 113(3):680–690.
  • Dou X, Yang Y, Luo J. 2018a. Estimating forest carbon fluxes using machine learning techniques based on eddy covariance measurements. Sustain. 10(1):203.
  • Dou X, Yang Y. 2018b. Estimating forest carbon fluxes using four different data-driven techniques based on long-term eddy covariance measurements: model comparison and evaluation. Sci Total Environ. 627:78–94.
  • Doughty CE, Goulden ML. 2008. Are tropical forests near a high temperature threshold? J Geophys Res Biogeosci. 113:G00B07.
  • Falge E, Baldocchi D, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer C, Burba G, Clement R, Davis KJ, et al. 2002. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric Meteorol. 113(1–4):53–74.
  • Field CB, Randerson JT, Malmström CM. 1995. Global net primary production: combining ecology and remote sensing. Remote Sens Environ. 51(1):74–88.
  • Finzi AC, Giasson M‐A, Barker Plotkin AA, Aber JD, Boose ER, Davidson EA, Dietze MC, Ellison AM, Frey SD, Goldman E, et al. 2020. Carbon budget of the Harvard Forest Long‐Term Ecological Research site: pattern, process, and response to global change. Ecol Monogr. 90(4):e01423.
  • Goetz SJ, Prince SD. 1999. Modelling terrestrial carbon exchange and storage: evidence and implications of functional convergence in light-use efficiency. In Advances in ecological research. Vol. 28. London: Academic Press. p. 57–92.
  • Gonsamo A, Chen JM. 2018. Vegetation primary productivity. In: Liang S, editor. Comprehensive remote sensing. Netherlands: Elsevier Science.
  • Ghosh S, Nandy S, Mohanty S, Subba R, Kushwaha SPS. 2019. Are phenological variations in natural teak (Tectona grandis) forests of India governed by rainfall? A remote sensing based investigation. Environ Monit Assess. 191(S3):1–10.
  • Heinsch FA, Zhao M, Running SW, Kimball JS, Nemani RR, Davis KJ, Bolstad PV, Cook BD, Desai AR, Ricciuto DM, et al. 2006. Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Trans Geosci Remote Sens. 44(7):1908–1925.
  • Hilker T, Coops NC, Wulder MA, Black TA, Guy RD. 2008. The use of remote sensing in light use efficiency based models of gross primary production: a review of current status and future requirements. Sci Total Environ. 404(2–3):411–423.
  • Hollinger DY, Davidson EA, Fraver S, Hughes H, Lee JT, Richardson AD, Savage K, Sihi D, Teets A. 2021. Multi‐decadal carbon cycle measurements indicate resistance to external drivers of change at the Howland forest AmeriFlux site. J Geophys Res Biogeosci.126(8):e2021JG006276.
  • Huang M, Piao S, Ciais P, Peñuelas J, Wang X, Keenan TF, Peng S, Berry JA, Wang K, Mao J, et al. 2019. Air temperature optima of vegetation productivity across global biomes. Nat Ecol Evol. 3(5):772–779.
  • Jenkins JP, Richardson AD, Braswell BH, Ollinger SV, Hollinger DY, Smith ML. 2007. Refining light-use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements. Agric for Meteorol. 143(1–2):64–79.
  • Jin H, Bao G, Chen J, Chopping M, Jin E, Mandakh U, Jiang K, Huang X, Bao Y, Vandansambuu B. 2020. Modifying the maximal light-use efficiency for enhancing predictions of vegetation net primary productivity on the Mongolian Plateau. Int J Remote Sens. 41(10):3740–3760.
  • Joiner J, Yoshida Y, Zhang Y, Duveiller G, Jung M, Lyapustin A, Wang Y, Tucker CJ. 2018. Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data. Remote Sens. 10(9):1346.
  • Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD. 2013. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nat. 499(7458):324–327.
  • Kumar R, Nandy S, Agarwal R, Kushwaha SPS. 2014. Forest cover dynamics analysis and prediction modeling using logistic regression model. Ecol Indic. 45:444–455.
  • Kushwaha SPS, Nandy S, Shah MA, Agarwal R, Mukhopadhyay S. 2018. Forest cover monitoring and prediction in a Lesser Himalayan elephant landscape. Curr Sci. 115(3):510–516.
  • Landsberg JJ. 1986. Physiological ecology of forest production. London: Academic Press.
  • Landsberg JJ, Waring RH. 1997. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For Ecol Manag. 95(3):209–228.
  • Law BE, Williams M, Anthoni PM, Baldocchi DD, Unsworth MH. 2000b. Measuring and modelling seasonal variation of carbon dioxide and water vapour exchange of a Pinus ponderosa forest subject to soil water deficit. Glob Chang Biol. 6(6):613–630.
  • Law BE, Waring R, Anthoni PM, Aber JD. 2000a. Measurements of gross and net ecosystem productivity and water vapour exchange of a Pinus ponderosa ecosystem, and an evaluation of two generalized models. Glob Chang Biol. 6(2):155–168.
  • Li X, Liang S, Yu G, Yuan W, Cheng X, Xia J, Zhao T, Feng J, Ma Z, Ma M, et al. 2013. Estimation of gross primary production over the terrestrial ecosystems in China. Ecol Mod. 261–262:80–92.
  • Li Z, Xu D, Guo X. 2014. Remote sensing of ecosystem health: opportunities, challenges, and future perspectives. Sensors (Basel). 14(11):21117–21139.
  • Liu Z, Wang L, Wang S. 2014. Comparison of different GPP models in China using MODIS image and ChinaFLUX data. Remote Sens. 6(10):10215–10231.
  • Madani N, Kimball JS, Running SW. 2017. Improving global gross primary productivity estimates by computing optimum light use efficiencies using flux tower data. J Geophys Res Biogeosci. 122(11):2939–2951.
  • Mahadevan P, Wofsy SC, Matross DM, Xiao X, Dunn AL, Lin JC, Gerbig C, Munger JW, Chow VY, Gottlieb EW. 2008. A satellite‐based biosphere parameterization for net ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model (VPRM). Glob Biogeochem Cycles. 22(2):GB2005.
  • Medlyn BE, Dreyer E, Ellsworth D, Forstreuter M, Harley PC, Kirschbaum MUF, Le Roux X, Montpied P, Strassemeyer J, Walcroft A, et al. 2002. Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ. 25(9):1167–1179.
  • Monteith JL. 1972. Solar radiation and productivity in tropical ecosystems. J Appl Ecol. 9(3):747–766.
  • Monteith JL, Moss CJ. 1977. Climate and the efficiency of crop production in Britain [and Discussion]. Philos Trans R Soc London B Biol Sci. 281(980):277–294.
  • Nandy S, Ghosh S, Kushwaha SPS, Kumar AS, Navalgund RR. 2019. Remote sensing-based forest biomass assessment in northwest Himalayan landscape. In: Remote sensing of Northwest Himalayan ecosystems. Singapore: Springer. p. 285–311.
  • Navalgund RR, Kumar AS, Nandy S. 2019. Remote sensing of northwest Himalayan ecosystems. 1st ed. Singapore: Springer.
  • Niu B, He Y, Zhang X, Fu G, Shi P, Du M, Zhang Y, Zong N. 2016. Tower-based validation and improvement of MODIS gross primary production in an alpine swamp meadow on the Tibetan Plateau. Remote Sens. 8(7):592.
  • Noumonvi KD, Ferlan M. 2020. Empirical vs. light-use efficiency modelling for estimating carbon fluxes in a mid-succession ecosystem developed on abandoned karst grassland. PLoS One. 15(8):e0237351.
  • Pillai ND, Nandy S, Patel NR, Srinet R, Watham T, Chauhan P. 2019. Integration of eddy covariance and process-based model for the intra-annual variability of carbon fluxes in an Indian tropical forest. Biodivers Conserv. 28(8–9):2123–2141.
  • Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA. 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem Cycles. 7(4):811–841.
  • Rouse J, Jr, Haas RH, Schell JA, Deering DW. 1974. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec Publ. 351:309.
  • Ruimy A, Jarvis PG, Baldocchi DD, Saugier B. 1995. CO2 fluxes over plant canopies and solar radiation: a review. In: Advances in ecological research. Vol. 26. London: Academic Press. p. 1–68.
  • Running SW, Thornton PE, Nemani R, Glassy JM. 2000. Global terrestrial gross and net primary productivity from the earth observing system. In: Methods in ecosystem science. New York (NY): Springer. p. 44–57.
  • Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H. 2004. A continuous satellite-derived measure of global terrestrial primary production. BioScience. 54(6):547–560.2.0.CO;2]
  • Russell G, Jarvis PG, Monteith JL. 1989. Absorption of radiation by canopies and stand growth. In: Plant canopies: their growth, form and function. Cambridge: Cambridge University Press. p. 21–39.
  • Sannigrahi S. 2017. Modeling terrestrial ecosystem productivity of an estuarine ecosystem in the Sundarban Biosphere Region, India using seven ecosystem models. Ecol Mod. 356:73–90.
  • Sims DA, Rahman AF, Cordova VD, El-Masri BZ, Baldocchi DD, Bolstad PV, Flanagan LB, Goldstein AH, Hollinger DY, Misson L, et al. 2008. A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sens Environ. 112(4):1633–1646.
  • Sims DA, Rahman AF, Cordova VD, El‐Masri BZ, Baldocchi DD, Flanagan LB, Goldstein AH, Hollinger DY, Misson L, Monson RK, et al. 2006. On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. J Geophys Res Biogeosci. 111(G4):G04015.
  • Srinet R, Nandy S, Padalia H, Ghosh S, Watham T, Patel NR, Chauhan P. 2020b. Mapping plant functional types in Northwest Himalayan foothills of India using random forest algorithm in Google Earth Engine. Int J Remote Sens. 41(18):7296–7309.
  • Srinet R, Nandy S, Watham T, Padalia H, Patel NR, Chauhan P. 2020a. Spatio-temporal variability of gross primary productivity in moist and dry deciduous plant functional types of Northwest Himalayan Foothills of India using temperature-greenness model. Geocarto Int. 1–14.
  • Sulla-Menashe D, Friedl MA. 2018. User guide to collection 6 MODIS land cover (MCD12Q1 and MCD12C1) product. Reston (VA): USGS. p. 1–18.
  • Sun Z, Wang X, Zhang X, Tani H, Guo E, Yin S, Zhang T. 2019. Evaluating and comparing remote sensing terrestrial GPP models for their response to climate variability and CO2 trends. Sci Total Environ. 668:696–713.
  • Tan Z-H, Zeng J, Zhang Y-J, Slot M, Gamo M, Hirano T, Kosugi Y, da Rocha HR, Saleska SR, Goulden ML, et al. 2017. Optimum air temperature for tropical forest photosynthesis: mechanisms involved and implications for climate warming. Environ Res Lett. 12(5):054022.
  • Turner DP, Ritts WD, Styles JM, Yang Z, Cohen WB, Law BE, Thornton PE. 2006. A diagnostic carbon flux model to monitor the effects of disturbance and interannual variation in climate on regional NEP. Tellus B Chem Phys Meteorol. 58(5):476–490.
  • Vårhammar A, Wallin G, McLean CM, Dusenge ME, Medlyn BE, Hasper TB, Nsabimana D, Uddling J. 2015. Photosynthetic temperature responses of tree species in Rwanda: evidence of pronounced negative effects of high temperature in montane rainforest climax species. New Phytol. 206(3):1000–1012.
  • Wagle P, Gowda PH, Xiao XM, Anup KC. 2016. Parameterizing ecosystem light use efficiency and water use efficiency to estimate maize gross primary production and evapotranspiration using MODIS EVI. Agric. For. Meteorol. 222:87–97.
  • Wang H, Jia G, Fu C, Feng J, Zhao T, Ma Z. 2010. Deriving maximal light use efficiency from coordinated flux measurements and satellite data for regional gross primary production modeling. Remote Sens Environ. 114(10):2248–2258.
  • Wang Z, Zhang X, Chhin S, Zhang J, Duan A. 2021. Disentangling the effects of stand and climatic variables on forest productivity of Chinese fir plantations in subtropical China using a random forest algorithm. Agric for Meteorol. 304-305:108412.
  • Watham T, Patel NR, Kushwaha SPS, Dadhwal VK, Kumar AS. 2017a. Evaluation of remote-sensing-based models of gross primary productivity over Indian sal forest using flux tower and MODIS satellite data. Int J Remote Sens. 38(18):5069–5090.
  • Watham T, Kushwaha SPS, Patel NR, Dadhwal VK, Kumar AS. 2017b. Ecosystem productivity and its response to environmental variable of moist Indian sal forest. Trop Ecol. 58(4):761–768.
  • Watham T, Srinet R, Nandy S, Padalia H, Sinha SK, Patel NR, Chauhan P. 2020. Environmental control on carbon exchange of natural and planted forests in Western Himalayan foothills of India. Biogeochem. 151(2–3):291–311.
  • Wu C, Chen JM, Huang N. 2011. Predicting gross primary production from the enhanced vegetation index and photosynthetically active radiation: evaluation and calibration. Remote Sens Environ. 115(12):3424–3435.
  • Wutzler T, Lucas-Moffat A, Migliavacca M, Knauer J, Sickel K, Šigut L, Menzer O, Reichstein M. 2018. Basic and extensible post-processing of Eddy covariance flux data with REddyProc. Biogeosciences. 15(16):5015–5030.
  • Xiao X, Hollinger D, Aber J, Goltz M, Davidson EA, Zhang Q, Moore IIB. 2004a. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens Environ. 89(4):519–534.
  • Xiao X, Zhang Q, Braswell B, Urbanski S, Boles S, Wofsy S, Moore IIB, Ojima D. 2004b. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens Environ. 91(2):256–270.
  • Xiao X, Zhang Q, Saleska S, Hutyra L, De Camargo P, Wofsy S, Frolking S, Boles S, Keller M, Moore B. III 2005. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sens Environ. 94(1):105–122.
  • Yan Y, Liu X, Ou J, Li X, Wen Y. 2018. Assimilating multi-source remotely sensed data into a light use efficiency model for net primary productivity estimation. Int J Appl Earth Observ Geoinform. 72:11–25.
  • Yebra M, Van Dijk AI, Leuning R, Guerschman JP. 2015. Global vegetation gross primary production estimation using satellite-derived light-use efficiency and canopy conductance. Remote Sens Environ. 163:206–216.
  • Yuan W, Liu D, Dong W, Liu S, Zhou G, Yu G, Zhao T, Feng J, Ma Z, Chen J, et al. 2014. Multiyear precipitation reduction strongly decreases carbon uptake over northern China. J Geophys Res Biogeosci. 119(5):881–896.
  • Yuan W, Liu S, Zhou G, Zhou G, Tieszen LL, Baldocchi D, Bernhofer C, Gholz H, Allen H, Goldstein M, et al. 2007. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric for Meteorol. 143(3–4):189–207.
  • Zhang Y, Xiao X, Wu X, Zhou S, Zhang G, Qin Y, Dong J. 2017. A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci Data. 4(1):170165.
  • Zheng Y, Zhang L, Xiao J, Yuan W, Yan M, Li T, Zhang Z. 2018. Sources of uncertainty in gross primary productivity simulated by light use efficiency models: model structure, parameters, input data, and spatial resolution. Agric for Meteorol. 263:242–257.
  • Zhou X, Xin Q. 2019. Improving satellite-based modelling of gross primary production in deciduous broadleaf forests by accounting for seasonality in light use efficiency. Int J Remote Sens. 40(3):931–955.
  • Zhu H, Lin A, Wang L, Xia Y, Zou L. 2016. Evaluation of MODIS gross primary production across multiple biomes in China using eddy covariance flux data. Remote Sens. 8(5):395.
  • Zhu W, Pan Y, He H, Yu D, Hu H. 2006. Simulation of maximum light use efficiency for some typical vegetation types in China. Chinese Sci Bull. 51(4):457–463.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.