226
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Modeling riparian flood plain wetland water richness in pursuance of damming and linking it with a methane emission rate

&
Pages 7954-7982 | Received 11 May 2021, Accepted 28 Sep 2021, Published online: 15 Oct 2021

References

  • Aanderud ZT, Schoolmaster DR, Lennon JT. 2011. Plants mediate the sensitivity of soil respiration to rainfall variability. Ecosystems. 14(1):156–167.
  • Abbasi T, Abbasi T, Luithui C, Abbasi SA. 2020. Modelling methane and nitrous oxide emissions from rice paddy wetlands in India using artificial neural networks (ANNs) (vol 11, 2169, 2019). Water. 12(3):751.
  • Arabameri A, Santosh M, Saha S, Ghorbanzadeh O, Roy J, Tiefenbacher JP, Moayedi H, Costache R. 2021a. Spatial prediction of shallow landslide: application of novel rotational forest-based reduced error pruning tree. Geomat Nat Hazards Risk. 12(1):1343–1370.
  • Arabameri A, Chandra Pal S, Rezaie F, Chakrabortty R, Saha A, Blaschke T, Di Napoli M, Ghorbanzadeh O, Thi Ngo PT. 2021b. Decision tree based ensemble machine learning approaches for landslide susceptibility mapping. Geocarto Int. 1–28.
  • Agarwal R, Garg JK. 2007. Methane emission modelling using MODIS thermal and optical data: a case study on Gujarat. J Indian Soc Remote Sens. 35(4):323–331.
  • Ahmed K, Sachindra DA, Shahid S, Iqbal Z, Nawaz N, Khan N. 2020. Multi-model ensemble predictions of precipitation and temperature using machine learning algorithms. Atmos Res. 236:104806.
  • Akumu CE, Pathirana S, Baban S, Bucher D. 2010. Modeling methane emission from wetlands in North-Eastern New South Wales, Australia using Landsat ETM+. Remote Sens. 2(5):1378–1399.
  • Bartlett KB, Harriss RC. 1993. Review and assessment of methane emissions from wetlands. Chemosphere. 26(1–4):261–320.
  • Bansal S, Chakrabort M, Katyal D, Garg JK. 2015. Assessment of methane variability from natural wetlands of Uttar Pradesh, India – implications for tropical countries. Res J Environ Sci. 9(3):101–118.
  • Bansal S, Garg JK, Sharma CS, Katyal D. 2018. Spatial methane emission modelling from wetlands using geospatial tools. Int J Remote Sens. 39(18):5907–5933.
  • Bansal S, Johnson OF, Meier J, Zhu X. 2020. Vegetation affects timing and location of wetland methane emissions. J Geophys Res Biogeosci. 125(9):p.e2020JG005777.
  • Beaulieu JJ, DelSontro T, Downing JA. 2019. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nat Commun. 10(1):1–5.
  • Behnia P, Blais-Stevens A. 2018. Landslide susceptibility modelling using the quantitative random forest method along the northern portion of the Yukon Alaska Highway Corridor, Canada. Nat Hazards. 90(3):1407–1426.
  • Borro M, Morandeira N, Salvia M, Minotti P, Perna P, Kandus P. 2014. Mapping shallow lakes in a large South American floodplain: a frequency approach on multitemporal Landsat TM/ETM data. J Hydrol. 512:39–52.
  • Bui DT, Ho TC, Revhaug I, Pradhan B, Nguyen DB. 2014. Landslide susceptibility mapping along the national road 32 of Vietnam using GIS-based J48 decision tree classifier and its ensembles. In Cartography from pole to pole. Berlin, Heidelberg: Springer; p. 303–317.
  • Bui DT, Khosravi K, Tiefenbacher J, Nguyen H, Kazakis N. 2020. Improving prediction of water quality indices using novel hybrid machine-learning algorithms. Sci Tot Environ. 721:137612.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32.
  • Bridgham SD, Richardson CJ. 1992. Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biol Biochem. 24(11):1089–1099.
  • Calabrese S, Garcia A, Wilmoth JL, Zhang X, Porporato A. 2021. Critical inundation level for methane emissions from wetlands. Environ Res Lett. 16(4):044038.
  • Cardinaux F, Enenkl M, Giron F, Kemp T, Uhlich S. 2020. Sony Corp. Method, system and artificial neural network. U.S. Patent. 10,564,923.
  • Chen F, Yu B, Li B. 2018. A practical trial of landslide detection from single-temporal Landsat8 images using contour-based proposals and random forest: a case study of national Nepal. Landslides. 15(3):453–464.
  • Chen W, Hong H, Li S, Shahabi H, Wang Y, Wang X, Ahmad BB. 2019. Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. J Hydrol. 575:864–873.
  • Chen T, Zhu L, Niu RQ, Trinder CJ, Peng L, Lei T. 2020. Mapping landslide susceptibility at the Three Gorges Reservoir, China, using gradient boosting decision tree, random forest and information value models. J Mt Sci. 17(3):670–685.
  • Chen L, Wu Y, Xu YJ, Zhang G. 2021. Alteration of flood pulses by damming the Nenjiang River, China – implication for the need to identify a hydrograph-based inundation threshold for protecting floodplain wetlands. Ecol Indic. 124:107406.
  • Chicco D, Jurman G. 2020. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics. 21(1):6–13.
  • Choi C, Kim J, Han H, Han D, Kim HS. 2019. Development of water level prediction models using machine learning in wetlands: a case study of UPO wetland in South Korea. Water. 12(1):93.
  • Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A. 2019. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Tot Environ. 651(Pt 2):2087–2096.
  • Ciężkowski W, Szporak-Wasilewska S, Kleniewska M, Jóźwiak J, Gnatowski T, Dąbrowski P, Góraj M, Szatyłowicz J, Ignar S, Chormański J. 2020. Remotely sensed land surface temperature-based water stress index for wetland habitats. Remote Sens. 12(4):631.
  • CLEAR 2002. Forest fragmentation in Connecticut: 1985–2006. USA: Center for Land Use Education and Research. University of Connecticut, Middlesex County Extension Centre; http://clear.uconn.edu/projects/landscape/forestfrag. Accessed September 7, 2019.
  • Cong P, Chen K, Qu L, Han J. 2019. Dynamic changes in the wetland landscape pattern of the Yellow River Delta from 1976 to 2016 based on satellite data. Chin Geogr Sci. 29(3):372–381.
  • Dang VH, Hoang ND, Nguyen LMD, Bui DT, Samui P. 2020. A novel GIS-based random forest machine algorithm for the spatial prediction of shallow landslide susceptibility. Forests. 11(1):118.
  • Davidson NC. 2014. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar Freshwater Res. 65(10):934–941.
  • Debanshi S, Pal S. 2020a. Modelling water richness and habitat suitability of the wetlands and measuring their spatial linkages in mature Ganges delta of India. J Environ Manage. 271:110956.
  • Debanshi S, Pal S. 2020b. Effects of water richness and seasonality on atmospheric methane emission from the wetlands of deltaic environment. Ecol Indic. 118:106767.
  • Donchyts G, Schellekens J, Winsemius H, Eisemann E, Van de Giesen N. 2016. A 30 m resolution surface water mask including estimation of positional and thematic differences using landsat 8, srtm and openstreetmap: a case study in the Murray–Darling Basin, Australia. Remote Sens. 8(5):386.
  • Du J, Song K, Yan B. 2019. Impact of the Zhalong wetland on neighboring land surface temperature based on remote sensing and GIS. Chin Geogr Sci. 29(5):798–808.
  • Du J, Wu X, Wang Z, Li J, Chen X. 2020. Reservoir-induced hydrological alterations using ecologically related hydrologic metrics: case study in the Beijiang River, China. Water. 12(7):2008.
  • Du L, McCarty GW, Zhang X, Lang MW, Vanderhoof MK, Li X, Huang C, Lee S, Zou Z. 2020. Mapping forested wetland inundation in the Delmarva Peninsula, USA using deep convolutional neural networks. Remote Sens. 12(4):644.
  • Duan G, Niu R. 2018. Lake area analysis using exponential smoothing model and long time-series Landsat images in Wuhan, China. Sustainability. 10(2):149.
  • El Naqa I, Ruan D, Valdes G, Dekker A, McNutt T, Ge Y, Wu QJ, Oh JH, Thor M, Smith W, et al. 2018. Machine learning and modeling: data, validation, communication challenges. Med Phys. 45(10):e834–e840.
  • Felton BR, O’Neil GL, Robertson MM, Fitch GM, Goodall JL. 2019. Using random forest classification and nationally available geospatial data to screen for wetlands over large geographic regions. Water. 11(6):1158.
  • Garosi Y, Sheklabadi M, Conoscenti C, Pourghasemi HR, Van Oost K. 2019. Assessing the performance of GIS-based machine learning models with different accuracy measures for determining susceptibility to gully erosion . Sci Tot Environ. 664:1117–1132.
  • Ghasemain B, Asl DT, Pham BT, Avand M, Nguyen HD, Janizadeh SJVJOES. 2020. Shallow landslide susceptibility mapping: A comparison between classification and regression tree and reduced error pruning tree algorithms. TCCKHVTD. 42(3):208–227.
  • Ghosh S, Das A. 2020. Wetland conversion risk assessment of East Kolkata wetland: a Ramsar site using random forest and support vector machine model. J Cleaner Prod. 275:123475.
  • Gupta N, Mathew A, Khandelwal S. 2019. Analysis of cooling effect of water bodies on land surface temperature in nearby region: a case study of Ahmedabad and Chandigarh cities in India. Egypt J. Remote Sens Space Sci. 22(1):81–93.
  • Han J, Park S, Kim S, Son S, Lee S, Kim J. 2019. Performance of logistic regression and support vector machines for seismic vulnerability assessment and mapping: a case study of the 12 September 2016 ML5. 8 Gyeongju Earthquake, South Korea. Sustainability. 11(24):7038.
  • He Y, Ma D, Xiong J, Cheng W, Jia H, Wang N, Guo L, Duan Y, Liu J, Yang G. 2021. Flash flood vulnerability assessment of roads in China based on support vector machine. Geocarto Int. 1–24.
  • Hosseini FS, Choubin B, Mosavi A, Nabipour N, Shamshirband S, Darabi H, Haghighi AT. 2020. Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: application of the simulated annealing feature selection method. Sci Tot Environ. 711:135161.
  • Huang GH, Li XZ, Hu YM, Shi Y, Xiao DN. 2005. Methane (CH4) emission from a natural wetland of Northern China. J Environ Sci Health. 40(6–7):1227–1238.
  • Hu X, Zhang P, Zhang Q, Wang J. 2021. Improving wetland cover classification using artificial neural networks with ensemble techniques. GIS Remote Sens. 58(4):603–621.
  • IPCC and Core Writing Team. 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; 27:408.
  • Islam ARMT, Talukdar S, Mahato S, Ziaul S, Eibek KU, Akhter S, Pham QB, Mohammadi B, Karimi F, Linh NTT. 2021. Machine learning algorithm-based risk assessment of Riparian wetlands in Padma River Basin of Northwest Bangladesh. Environ Sci Pollut Res Int. 28(26):34450–34422.
  • Jamali A. 2019. Evaluation and comparison of eight machine learning models in land use/land cover mapping using Landsat 8 OLI: a case study of the Northern region of Iran. SN Appl Sci. 1(11):1448.
  • Jeffrey LC, Maher DT, Johnston SG, Kelaher BP, Steven A, Tait DR. 2019. Wetland methane emissions dominated by plant‐mediated fluxes: contrasting emissions pathways and seasons within a shallow freshwater subtropical wetland. Limnol Oceanogr. 64(5):1895–1912.
  • Kadavi PR, Lee CW, Lee S. 2018. Application of ensemble-based machine learning models to landslide susceptibility mapping. Remote Sens. 10(8):1252.
  • Kaplan G, Avdan U. 2018. Monthly analysis of wetlands dynamics using remote sensing data. IJGI. 7(10):411.
  • Kaplan G, Avdan ZY, Avdan U. 2019. Mapping and monitoring wetland dynamics using thermal, optical, and SAR remote sensing data. Wetlands Manage Assess Risk Sustain Sol. 87–106.
  • Karimi SS, Saintilan N, Wen L, Valavi R. 2019. Application of machine learning to model wetland inundation patterns across a large semiarid floodplain. Water Resour Res. 55(11):8765–8778.
  • Khatun R, Talukdar S, Pal S, Kundu S. 2021. Measuring dam induced alteration in water richness and eco-hydrological deficit in flood plain wetland. J Environ Manage. 285:112157.
  • Kundu S, Pal S, Talukdar S, Mandal I. 2021. Impact of wetland fragmentation due to damming on the linkages between water richness and ecosystem services. Environ Sci Pollut Res Int. 28(36):50266–50220.
  • Leong WC, Bahadori A, Zhang J, Ahmad Z. 2021. Prediction of water quality index (WQI) using support vector machine (SVM) and least square-support vector machine (LS-SVM). Int J River Basin Manage. 19(2):149–156.
  • Li Y, Liu X, Han Z, Dou J. 2020. Spatial proximity-based geographically weighted regression model for landslide susceptibility assessment: a case study of Qingchuan Area, China. Appl Sci. 10(3):1107.
  • Li Z, Jiang W, Wang W, Chen Z, Ling Z, Lv J. 2020. Ecological risk assessment of the wetlands in Beijing–Tianjin–Hebei urban agglomeration. Ecol Indic. 117:106677.
  • Liu Y. 1996. Modeling the emissions of nitrous oxide (N2O) and methane (CH4) from the terrestrial biosphere to the atmosphere [Doctoral dissertation]. MIT Joint Program on the Science and Policy of Global Change.
  • Liu T, Abd-Elrahman A, Morton J, Wilhelm VL. 2018. Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system. GIS Remote Sens. 55(2):243–264.
  • Liu X, Zhang Q, Li Y, Tan Z, Werner AD. 2020. Satellite image-based investigation of the seasonal variations in the hydrological connectivity of a large floodplain (Poyang Lake, China). J Hydrol. 585:124810.
  • Ma Y, Xu N, Sun J, Wang XH, Yang F, Li S. 2019. Estimating water levels and volumes of lakes dated back to the 1980s using Landsat imagery and photon-counting lidar datasets. Remote Sens Environ. 232:111287.
  • Mallik S, Bhowmik T, Mishra U, Paul N. 2020. Mapping and prediction of soil organic carbon by an advanced geostatistical technique using remote sensing and terrain data. Geocarto Int. 1–17.
  • Maxwell AE, Warner TA, Fang F. 2018. Implementation of machine-learning classification in remote sensing: an applied review. Int J Remote Sens. 39(9):2784–2817.
  • Merghadi A, Yunus AP, Dou J, Whiteley J, ThaiPham B, Bui DT, Avtar R, Abderrahmane B. 2020. Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth Sci Rev. 207:103225.
  • Mitsch WJ, Bernal B, Nahlik AM, Mander Ü, Zhang L, Anderson CJ, Jørgensen SE, Brix H. 2013. Wetlands, carbon, and climate change. Landscape Ecol. 28(4):583–597.
  • Mohamed WNHW, Salleh MNM, Omar AH. 2012, November. A comparative study of reduced error pruning method in decision tree algorithms. In 2012 IEEE International Conference on Control System, Computing and Engineering. IEEE; p. 392–397.
  • Mohsenzadeh Karimi S, Kisi O, Porrajabali M, Rouhani-Nia F, Shiri J. 2020. Evaluation of the support vector machine, random forest and geo-statistical methodologies for predicting long-term air temperature. ISH J Hydraul Eng. 26(4):376–386.
  • Moomaw WR, Chmura GL, Davies GT, Finlayson CM, Middleton BA, Natali SM, Perry JE, Roulet N, Sutton-Grier AE. 2018. Wetlands in a changing climate: science, policy and management. Wetlands. 38(2):183–205.
  • Mosavi A, Ozturk P, Chau KW. 2018. Flood prediction using machine learning models: literature review. Water. 10(11):1536.
  • Naidoo L, Van Deventer H, Ramoelo A, Mathieu R, Nondlazi B, Gangat R. 2019. Estimating above ground biomass as an indicator of carbon storage in vegetated wetlands of the grassland biome of South Africa. Int J Appl Earth Obs Geoinform. 78:118–129.
  • Nguyen U, Glenn EP, Dang TD, Pham LT. 2019. Mapping vegetation types in semi-arid riparian regions using random forest and object-based image approach: a case study of the Colorado River Ecosystem, Grand Canyon, Arizona. Ecol Inform. 50:43–50.
  • Nguyen H, Drebenstedt C, Bui XN, Bui DT. 2020. Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network. Nat Resour Res. 29(2):691–709.
  • Nhu V-H, Shirzadi A, Shahabi H, Singh SK, Al-Ansari N, Clague JJ, Jaafari A, Chen W, Miraki S, Dou J, et al. 2020. Shallow landslide susceptibility mapping: a comparison between logistic model tree, logistic regression, naïve bayes tree, artificial neural network, and support vector machine algorithms. IJERPH. 17(8):2749.
  • Nohani E, Moharrami M, Sharafi S, Khosravi K, Pradhan B, Pham BT, Lee S, M Melesse A. 2019. Landslide susceptibility mapping using different GIS-based bivariate models. Water. 11(7):1402.
  • Nyarko BK. 2020. Wetland river flow interaction in a sedimentary formation of the White Volta Basin of Ghana. ESR. 9(1):15.
  • Orhan O, Bilgilioglu SS, Kaya Z, Ozcan AK, Bilgilioglu H. 2020. Assessing and mapping landslide susceptibility using different machine learning methods. Geocarto Int. 1–26.
  • Pal S. 2016. Impact of water diversion on hydrological regime of the Atreyee river of Indo-Bangladesh. Int J River Basin Manage. 14(4):459–475.
  • Pal S, Saha TK. 2018. Identifying dam-induced wetland changes using an inundation frequency approach: the case of the Atreyee River basin of Indo-Bangladesh. Ecohydrol Hydrobiol. 18(1):66–81.
  • Pal S, Paul S. 2020. Assessing wetland habitat vulnerability in moribund Ganges delta using bivariate models and machine learning algorithms. Ecol Indic. 119:106866.
  • Pal S, Sarda R. 2020. Damming effects on the degree of hydrological alteration and stability of wetland in lower Atreyee River basin. Ecol Indic. 116:106542.
  • Pal S, Talukdar S, Ghosh R. 2020. Damming effect on habitat quality of riparian corridor. Ecol Indic. 114:106300.
  • Pal S, Sarda R. 2021a. Measuring the degree of hydrological variability of riparian wetland using hydrological attributes integration (HAI) histogram comparison approach (HCA) and range of variability approach (RVA). Ecol Indic. 120:106966.
  • Pal S, Sarda R. 2021b. Modelling water richness in riparian flood plain wetland using bivariate statistics and machine learning algorithms and figuring out the role of damming. Geocarto Int. 1–24.
  • Pal S, Singha P, Lepcha K, Debanshi S, Talukdar S, Saha TK. 2021. Proposing multicriteria decision based valuation of ecosystem services for fragmented landscape in mountainous environment. Remote Sens Appl Soc Environ. 21:100454.
  • Panahi M, Dodangeh E, Rezaie F, Khosravi K, Van Le H, Lee MJ, Lee S, Pham BT. 2021. Flood spatial prediction modeling using a hybrid of meta-optimization and support vector regression modeling. Catena. 199:105114.
  • Pandey PC, Sharma LK. 2021. Introduction to natural resource monitoring using remote sensing technology. Adv Remote Sens Nat Resour Monitor. 1–8.
  • Pandey S, Houweling S, Lorente A, Borsdorff T, Tsivlidou M, Bloom AA, Poulter B, Zhang Z, Aben I. 2021. Using satellite data to identify the methane emission controls of South Sudan's wetlands. Biogeosciences. 18(2):557–572.
  • Pham BT, Pradhan B, Bui DT, Prakash I, Dholakia MB. 2016. A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India). Environ Model Softw. 84:240–250.
  • Pham BT, Nguyen MD, Bui KTT, Prakash I, Chapi K, Bui DT. 2019. A novel artificial intelligence approach based on multi-layer perceptron neural network and biogeography-based optimization for predicting coefficient of consolidation of soil. Catena. 173:302–311.
  • Pham BT, Prakash I, Dou J, Singh SK, Trinh PT, Tran HT, Le TM, Van Phong T, Khoi DK, Shirzadi A, et al. 2020. A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers. Geocarto Int. 35(12):1267–1292.
  • Pham LT, Luo L, Finley A. 2021. Evaluation of random forests for short-term daily streamflow forecasting in rainfall-and snowmelt-driven watersheds. Hydrol Earth Syst Sci. 25(6):2997–3015.
  • Pham BT, Jaafari A, Nguyen-Thoi T, Van Phong T, Nguyen HD, Satyam N, Masroor M, Rehman S, Sajjad H, Sahana M, et al. 2021. Ensemble machine learning models based on Reduced Error Pruning Tree for prediction of rainfall-induced landslides. Int J Digital Earth. 14(5):575–522.
  • Pradhan B. 2013. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci. 51:350–365.
  • Qin X, Haiming W, Jian L. 2014. Methane emissions from wetlands in China: effects of wetland type and climate zone. Carbon Manage. 5(5–6):535–541.
  • Quinlan JR. 1987, January. Decision trees as probabilistic classifiers. In: Proceedings of the fourth international workshop on machine learning. Morgan Kaufmann; p. 31–37.
  • Rameshkumar S, Radhakrishnan K, Aanand S, Rajaram R. 2019. Influence of physicochemical water quality on aquatic macrophyte diversity in seasonal wetlands. Appl Water Sci. 9(1):12.
  • Rashid B, Islam SU, Badrul I. 2014. Drainage characteristics and evolution of the Barind Tract, Bangladesh. Am J Earth Sci. 1(1):86–98.
  • Rodriguez-Galiano V, Sanchez-Castillo M, Chica-Olmo M, Chica-Rivas MJOGR. 2015. Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol Rev. 71:804–818.
  • Roelen C, Thorsen S, Heymans M, Twisk J, Bültmann U, Bjørner J. 2018. Development and validation of a prediction model for long-term sickness absence based on occupational health survey variables. Disabil Rehabil. 40(2):168–175.
  • Saha TK, Pal S. 2019a. Exploring physical wetland vulnerability of Atreyee river basin in India and Bangladesh using logistic regression and fuzzy logic approaches. Ecol Indic. 98:251–265.
  • Saha TK, Pal S. 2019b. Emerging conflict between agriculture extension and physical existence of wetland in post-dam period in Atreyee River basin of Indo-Bangladesh. Environ Dev Sustain. 21(3):1485–1505.
  • Santi E. 2016. Neural networks applications for the remote sensing of hydrological parameters. In Artificial neural networks – models and applications book. TechOpen; p. 309–334.
  • Sarkar UK, Borah BC. 2018. Flood plain wetland fisheries of India: with special reference to impact of climate change. Wetlands Ecol Manage. 26(1):1–15.
  • Sawyer TE, King GM. 1993. Glucose uptake and end product formation in an intertidal marine sediment. Appl Environ Microbiol. 59(1):120–128.
  • Schaeffer BA, Iiames J, Dwyer J, Urquhart E, Salls W, Rover J, Seegers B. 2018. An initial validation of Landsat 5 and 7 derived surface water temperature for US lakes, reservoirs, and estuaries. Int J Remote Sens. 39(22):7789–7805.
  • Schubert CJ, Wehrli B. 2019. Contribution of methane formation and methane oxidation to methane emission from freshwater systems. In: Biogenesis of hydrocarbons. Handbook of hydrocarbon and lipid microbiology. New York: Springer; p. 401–430.
  • Sevgen E, Kocaman S, Nefeslioglu HA, Gokceoglu C. 2019. A novel performance assessment approach using photogrammetric techniques for landslide susceptibility mapping with logistic regression, ANN and random forest. Sensors. 19(18):3940.
  • Shao R, Xu M, Li R, Dai X, Liu L, Yuan Y, Wang H, Yang F. 2017. Land use legacies and nitrogen fertilization affect methane emissions in the early years of rice field development. Nutr Cycl Agroecosyst. 107(3):369–380.
  • Sheppard JC, Westberg H, Hopper JF, Ganesan K, Zimmerman P. 1982. Inventory of global methane sources and their production rates. J Geophys Res. 87(C2):1305–1312.
  • Singha P, Das P, Talukdar S, Pal S. 2020. Modeling livelihood vulnerability in erosion and flooding induced river island in Ganges Riparian corridor, India. Ecol Indic. 119:106825.
  • Slagter B, Tsendbazar NE, Vollrath A, Reiche J. 2020. Mapping wetland characteristics using temporally dense Sentinel-1 and Sentinel-2 data: a case study in the St. Lucia wetlands, South Africa. Int J Appl Earth Obs Geoinform. 86:102009.
  • Sun M, Zhang Y, Ma J, Yuan W, Li X, Cheng X. 2017. Satellite data based estimation of methane emissions from rice paddies in the Sanjiang Plain in northeast China. PloS One. 12(6):e0176765.
  • Talukdar S, Pal S. 2019. Effects of damming on the hydrological regime of Punarbhaba river basin wetlands. Ecol Eng. 135:61–74.
  • Talukdar S, Pal S. 2020. Modeling flood plain wetland transformation in consequences of flow alteration in Punarbhaba River in India and Bangladesh. J Clean Prod. 261:120767.
  • Talukdar S, Pal S, Chakraborty A, Mahato S. 2020. Damming effects on trophic and habitat state of riparian wetlands and their spatial relationship. Ecol Indic. 118:106757.
  • Tien Bui D, Shirzadi A, Shahabi H, Chapi K, Omidavr E, Pham BT, Talebpour Asl D, Khaledian H, Pradhan B, Panahi M, et al. 2019a. A novel ensemble artificial intelligence approach for gully erosion mapping in a semi-arid watershed (Iran). Sensors. 19(11):2444.
  • Tien Bui D, Shahabi H, Omidvar E, Shirzadi A, Geertsema M, Clague J, Khosravi K, Pradhan B, Pham B, Chapi K, et al. 2019b. Shallow landslide prediction using a novel hybrid functional machine learning algorithm. Remote Sens. 11(8):931.
  • Turetsky MR, Kotowska A, Bubier J, Dise NB, Crill P, Hornibrook ERC, Minkkinen K, Moore TR, Myers-Smith IH, Nykänen H, et al. 2014. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Glob Chang Biol. 20(7):2183–2197.
  • Upadhyay AK, Singh R, Singh, DP. editors. 2019. Restoration of wetland ecosystem: a trajectory towards a sustainable environment. New York: Springer.
  • Valentine DW, Holland EA, Schimel DS. 1994. Ecosystem and physiological controls over methane production in northern wetlands. J Geophys Res. 99(D1):1563–1571.
  • Van Asselen S, Verburg PH, Vermaat JE, Janse JH. 2013. Drivers of wetland conversion: a global meta-analysis. PloS One. 8(11):e81292.
  • Vogt P, Riitters KH, Estreguil C, Kozak J, Wade TG, Wickham JD. 2007. Mapping spatial patterns with morphological image processing. Landscape Ecol. 22(2):171–177.
  • Wali SU. 2018. Review of methane emissions and soil carbon in wetlands in dry landscapes, Macquarie Mashes, Australia. SF J Environ Earth Sci. 1(2):1024.
  • Wan R, Wang P, Wang X, Yao X, Dai X. 2018. Modeling wetland aboveground biomass in the Poyang Lake National Nature Reserve using machine learning algorithms and Landsat-8 imagery. J Appl Rem Sens. 12(04):1.
  • Wang D, Zhang S, Wang G, Han Q, Huang G, Wang H, Liu Y, Zhang Y. 2019. Quantitative assessment of the influences of three Gorges dam on the water level of Poyang Lake, China. Water. 11(7):1519.
  • Wang Y, Chen B, Guan C, Zhang B. 2019. Evolution of methane emissions in global supply chains during 2000–2012. Resour Conserv Recycl. 150:104414.
  • Wang Q, Wang S. 2020. Machine learning-based water level prediction in Lake Erie, Water. Water. 12(10):2654.
  • Wardrop DH, Hamilton AT, Nassry MQ, West JM, Britson AJ. 2019. Assessing the relative vulnerabilities of Mid‐Atlantic freshwater wetlands to projected hydrologic changes. Ecosphere. 10(2):e02561.
  • Westermann P, Ahring BK, Mah RA. 1989. Temperature compensation in Methanosarcina barkeri by modulation of hydrogen and acetate affinity. Appl Environ Microbiol. 55(5):1262–1266.
  • Westermann P. 1994. The effect of incubation temperature on steady-state concentrations of hydrogen and volatile fatty acids during anaerobic degradation in slurries from wetland sediments. FEMS Microbiol Ecol. 13(4):295–302.
  • Whyte A, Ferentinos KP, Petropoulos GP. 2018. A new synergistic approach for monitoring wetlands using Sentinels-1 and 2 data with object-based machine learning algorithms. Environ Model Softw. 104:40–54.
  • Wondie A. 2018. Ecological conditions and ecosystem services of wetlands in the Lake Tana Area, Ethiopia. Ecohydrol Hydrobiol. 18(2):231–244.
  • Wu C, Chen W. 2020. Indicator system construction and health assessment of wetland ecosystem – taking Hongze Lake Wetland, China as an example. Ecol Indic. 112:106164.
  • Xu X, Chen M, Yang G, Jiang B, Zhang J. 2020. Wetland ecosystem services research: a critical review. Global Ecol Conserv. 22:e01027.
  • Yu Y, Li J, Zhou Z, Zeng L, Zhang C. 2019. Estimation of the value of ecosystem carbon sequestration services under different scenarios in the central China (the Qinling–Daba mountain area). Sustainability. 12(1):337.
  • Yu L, Zhu J, Ji H, Bai X, Lin Y, Zhang Y, Sha L, Liu Y, Song Q, Dörsch P, et al. 2021. Topography-related controls on N2O emission and CH4 uptake in a tropical rainforest catchment. Sci Tot Environ. 775:145616.
  • Ziaul S, Pal S. 2017. Estimating wetland insecurity index for Chatra wetland adjacent English Bazar Municipality of West Bengal. Spat Inf Res. 25(6):813–823.
  • Zimmer C. 2010. The microbe factor and its role in our climate future. Yale Environ. 360.
  • Zhang B, Tian H, Lu C, Chen G, Pan S, Anderson C, Poulter B. 2017. Methane emissions from global wetlands: an assessment of the uncertainty associated with various wetland extent data sets. Atmos Environ. 165:310–321.
  • Zhang C, Comas X, Brodylo D. 2020. A remote sensing technique to upscale methane emission flux in a subtropical peatland. J Geophys Res Biogeosci. 125(10):e2020JG006002.
  • Zhao L, Wu X, Niu R, Wang Y, Zhang K. 2020. Using the rotation and random forest models of ensemble learning to predict landslide susceptibility. Geomatics Nat Hazards Risk. 11(1):1542–1564.
  • Zheng Y, Zhang G, Wu Y, Xu YJ, Dai C. 2019. Dam effects on downstream riparian wetlands: the Nenjiang River, Northeast China. Water. 11(10):2038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.