294
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Extraction of crop information through the spatiotemporal fusion of OLI and MODIS images

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 8336-8360 | Received 26 Jul 2021, Accepted 26 Oct 2021, Published online: 09 Nov 2021

References

  • Alliprandini LF, Abatti C, Bertagnolli PF, Cavassim JE, Gabe HL, Kurek A, Matsumoto MN, de Oliveira MAR, Pitol C, Prado LC, et al. 2009. Understanding Soybean Maturity Groups in Brazil: Environment, Cultivar Classification, and Stability. Crop Sci. 49(3):801–808. http://doi.wiley.com/10.2135/cropsci2008.07.0390.
  • Aparecido L. d O, Rolim GDS, Richetti J, Souza P. d, Johann JA. 2016. Köppen, Thornthwaite and Camargo climate classifications for climatic zoning in the State of Paraná, Brazil. Ciênc. Agrotec. 40(4):405–417. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542016000400405&lng=en&nrm=iso&tlng=en.
  • Atzberger C. 2013. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 5(2):949–981.
  • Barbetta PA. 2007. Estatística Aplicada às Ciências Sociais. Florianópolis: UFSC.
  • Becker WR, Johann JA, Richetti J, Silva LC, de A. 2017. Data mining techniques for separation of summer crop based on satellite images. Eng Agríc. 37(4):750–759. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162017000400750&lng=en&tlng=en.
  • Becker WR, Richetti J, Mercante E, Mora Esquerdo JCD, da Silva CA, Paludo A, Johann JA. 2020. Agricultural soybean and corn calendar based on moderate resolution satellite images for southern Brazil. Semina Ciênc Agrár. 41(5supl1):2419–2428.
  • Bégué A, Arvor D, Bellon B, Betbeder J, de Abelleyra D, Ferraz RPD, Lebourgeois V, Lelong C, Simões M, Verón SR. 2018. Remote sensing and cropping practices: A review. Remote Sens. 10(2):99.
  • Belgiu M, Drăgu L. 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS J Photogramm Remote Sens. 114:24–31.
  • Bendini H, do N, Garcia Fonseca LM, Schwieder M, Sehn Körting T, Rufin P, Del Arco Sanches I, Leitão PJ, Hostert P. 2019. Detailed agricultural land classification in the Brazilian cerrado based on phenological information from dense satellite image time series. Int J Appl Earth Obs Geoinf. 82(June):101872. https://linkinghub.elsevier.com/retrieve/pii/S0303243418308961.
  • Biau G, Scornet E. 2016. A random forest guided tour. Test. 25(2):197–227.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32.
  • Chen B, Huang B, Xu B. 2015. Comparison of spatiotemporal fusion models: A review. Remote Sens. 7(2):1798–1835.
  • Congalton RG. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ. 37(1):35–46.
  • Czapla-Myers J, McCorkel J, Anderson N, Thome K, Biggar S, Helder D, Aaron D, Leigh L, Mishra N. 2015. The Ground-Based Absolute Radiometric Calibration of Landsat 8 OLI. Remote Sens. 7(1):600–626. http://www.mdpi.com/2072-4292/7/1/600.
  • Daroczi G. 2015. Mastering Data Analysis with R. [place unknown].
  • Dias LCP, Pimenta FM, Santos AB, Costa MH, Ladle RJ. 2016. Patterns of land use, extensification, and intensification of Brazilian agriculture. Glob Chang Biol. 22(8):2887–2903. http://doi.wiley.com/10.1111/gcb.13314.
  • Eberhardt IDR, Schultz B, Rizzi R, Sanches IDA, Formaggio AR, Atzberger C, Mello MP, Immitzer M, Trabaquini K, Foschiera W, et al. 2016. Cloud cover assessment for operational crop monitoring systems in tropical areas. Remote Sens. 8(3):1–14.
  • EMBRAPA 2011. O novo mapa de solos do Brasil: legenda atualizada. Santos HG dos, Júnior W de C, Dart R de O, Áglio MLD, Sousa JS de, Pares JG, Fontana A, Martins AL da S, Oliveira AP de, editors. Rio de Janeiro: Empresa Brasileira de Pesquisa Agropecuária.
  • Emelyanova IV, McVicar TR, Van Niel TG, Li LT, van Dijk AIJM. 2013. Assessing the accuracy of blending Landsat-MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection. Remote Sens Environ. 133:193–209. http://dx.doi.org/10.1016/j.rse.2013.02.007.
  • Esquerdo JCDM, Antunes JFG, Coutinho AC, Speranza EA, Kondo AA, Santos J. d. 2020. SATVeg: A web-based tool for visualization of MODIS vegetation indices in South America. Comput Electron Agric. 175(May):105516..
  • FAOSTAT 2020. Production quantities by country - Average 1993-2018. [accessed 2020 Jun 17]. http://faostat3.fao.org.
  • Foody GM. 2009a. Sample size determination for image classification accuracy assessment and comparison. Int J Remote Sens. 30(20):5273–5291. http://www.tandfonline.com/doi/abs/10.1080/01431160903130937.
  • Foody GM. 2009b. Classification accuracy comparison: Hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority. Remote Sens Environ . 113(8):1658–1663. http://dx.doi.org/10.1016/j.rse.2009.03.014.
  • Fritz S, See L, Mccallum I, You L, Bun A, Moltchanova E, Duerauer M, Albrecht F, Schill C, Perger C, et al. 2015. Mapping global cropland and field size. Glob Chang Biol. 21(5):1980–1992.
  • Gao F, Anderson MC, Zhang X, Yang Z, Alfieri JG, Kustas WP, Mueller R, Johnson DM, Prueger JH. 2017. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sens Environ. 188:9–25.
  • Gao F, Hilker T, Zhu X, Anderson M, Masek J, Wang P, Yang Y. 2015. Fusing landsat and MODIS data for vegetation monitoring. IEEE Geosci Remote Sens Mag. 3(3):47–60.
  • Gao F, Masek J, Schwaller M, Hall F. 2006. On the blending of the landsat and MODIS surface reflectance: Predicting daily landsat surface reflectance. IEEE Trans Geosci Remote Sens. 44(8):2207–2218.
  • Gómez C, White JC, Wulder MA. 2016. Optical remotely sensed time series data for land cover classification: A review. ISPRS J Photogramm Remote Sens. 116:55–72.
  • Grzegozewski DM, Johann JA, Uribe-Opazo MA, Mercante E, Coutinho AC. 2016. Mapping soya bean and corn crops in the State of Paraná, Brazil, using EVI images from the MODIS sensor. Int J Remote Sens. 37(6):1257–1275.
  • Gusso A, Arvor D, Ricardo Ducati J, Veronez MR, Da Silveira LG. 2014. Assessing the modis crop detection algorithm for soybean crop area mapping and expansion in the Mato Grosso state, Brazil. Sci World J. 2014(:1–9.
  • Gusso A, Formaggio AR, Rizzi R, Adami M, Rudorff BFT. 2012. Soybean crop area estimation by Modis/Evi data. Pesq Agropec Bras. 47(3):425–435.
  • Hao P, Zhan Y, Wang L, Niu Z, Shakir M. 2015. Feature selection of time series MODIS data for early crop classification using random forest: A case study in Kansas, USA. Remote Sens. 7(5):5347–5369.
  • Helder D, Markham B, Morfitt R, Storey J, Barsi J, Gascon F, Clerc S, LaFrance B, Masek J, Roy DP, et al. 2018. Observations and recommendations for the calibration of Landsat 8 OLI and Sentinel 2 MSI for improved data interoperability. Remote Sens. 10(9):1–29.
  • Htitiou A, Boudhar A, Lebrini Y, Lionboui H, Chehbouni A, Benabdelouahab T. 2021. Classification and status monitoring of agricultural crops in central Morocco: a synergistic combination of OBIA approach and fused Landsat-Sentinel-2 data. J Appl Remote Sens. 15(01):1–21.
  • Huete A, Didan K, Miura T, Rodriguez E, Gao X, Ferreira L. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ. 83(1-2):195–213. http://linkinghub.elsevier.com/retrieve/pii/S0034425702000962.
  • IBGE. 2017. Censo Agropecuário, Florestal e Aquícola 2017. https://censos.ibge.gov.br/agro/2017/templates/censo_agro/resultadosagro/index.html.
  • IBGE. 2020. Produção agrícola municipal. [accessed 2020 Jun 17]. https://sidra.ibge.gov.br/pesquisa/pam/tabelas.
  • Jia K, Liang S, Wei X, Yao Y, Su Y, Jiang B, Wang X. 2014. Land cover classification of landsat data with phenological features extracted from time series MODIS NDVI data. Remote Sens. 6(11):11518–11532.
  • Johann JA, Becker WR, Uribe-Opazo MA, Mercante E. 2016. Uso de imagens do sensor orbital modis na estimação de datas do ciclo de desenvolvimento da cultura da soja para o estado do Paraná - Brasil. Eng Agríc. 36(1):126–142. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162016000100126&lng=pt&nrm=iso&tlng=en.
  • Johann JA, Rocha JV, Duft DG, Lamparelli RAC. 2012. Estimativa de áreas com culturas de verão no Paraná, por meio de imagens multitemporais EVI/Modis. Pesq Agropec Bras. 47(9):1295–1306.
  • Kong F, Li Xiaobing Wang H, Xie D, Li Xiang, Bai Y. 2016. Land cover classification based on fused data from GF-1 and MODIS NDVI time series. Remote Sens. 8(9):741.  http://www.mdpi.com/2072-4292/8/9/741
  • Li X, Foody GM, Boyd DS, Ge Y, Zhang Y, Du Y, Ling F. 2020. SFSDAF: An enhanced FSDAF that incorporates sub-pixel class fraction change information for spatio-temporal image fusion. Remote Sens Environ. 237:111537. https://doi.org/10.1016/j.rse.2019.111537.
  • Li J, Li Y, He L, Chen J, Plaza A. 2020. Spatio-temporal fusion for remote sensing data: an overview and new benchmark. Sci China Inf Sci. 63(4):140301. https://link.springer.com/10.1007/s11432-019-2785-y.
  • Li L, Zhao Y, Fu Y, Pan Y, Yu L, Xin Q. 2017. High Resolution Mapping of Cropping Cycles by Fusion of Landsat and MODIS Data. Remote Sens. 9(12):1232. http://www.mdpi.com/2072-4292/9/12/1232.
  • Liu X, Bo Y, Zhang J, He Y. 2015. Classification of C3 and C4 vegetation types using MODIS and ET M+ blended high spatio-temporal resolution data. Remote Sens. 7(11):15244–15268.
  • Liu H, Gong P, Wang J, Wang X, Ning G, Xu B. 2021. Production of global daily seamless data cubes and quantification of global land cover change from 1985 to 2020 - iMap World 1.0. Remote Sens Environ. 258:112364.
  • Lucht W, Roujean JL. 2000. Considerations in the parametric modeling of BRDF and albedo from multiangular satellite sensor observations. Remote Sens Rev. 18(2-4):343–379.
  • Mercante E, Lima LEP, de Justina DDD, Uribe-Opazo MA, Lamparelli RAC. 2012. Detection of soybean planted areas through orbital images based on culture spectral dynamics. Eng Agríc. 32(5):920–931.
  • Moré JJ. 1978. The Levenberg-Marquardt algorithm: Implementation and theory. In: Watson GA, editor. Numer Anal Lect Notes Math vol 630. [place unknown]: Springer Berlin Heidelberg; p. 105–116. http://link.springer.com/10.1007/BFb0067700.
  • Morfitt R, Barsi J, Levy R, Markham B, Micijevic E, Ong L, Scaramuzza P, Vanderwerff K. 2015. Landsat-8 Operational Land Imager (OLI) Radiometric Performance On-Orbit. Remote Sens. 7(2):2208–2237. http://www.mdpi.com/2072-4292/7/2/2208.
  • Nguyen LH, Joshi DR, Clay DE, Henebry GM. 2020. Characterizing land cover/land use from multiple years of Landsat and MODIS time series: A novel approach using land surface phenology modeling and random forest classifier. Remote Sens Environ. 238:111017..
  • Oldoni LV, Cattani CV, Mercante E, Johann JA, Antunes JFG, Almeida L. 2019. Annual cropland mapping using data mining and OLI Landsat-8. Rev Bras Eng Agrícola e Ambient. 23(12):952–958. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662019001200952&tlng=en.
  • Onojeghuo AO, Blackburn GA, Wang Q, Atkinson PM, Kindred D, Miao Y. 2018. Rice crop phenology mapping at high spatial and temporal resolution using downscaled MODIS time-series. GIScience Remote Sens. 55(5):659–677.
  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. 2011. Scikit-learn: Machine Learning in Python. J Mach Learn Res. 12:2825–2830. http://dl.acm.org/citation.cfm?id=2078195%5Cnhttp://arxiv.org/abs/1201.0490.
  • Pelletier C, Valero S, Inglada J, Champion N, Dedieu G. 2016. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens Environ. 187:156–168. http://dx.doi.org/10.1016/j.rse.2016.10.010.
  • Pereira Filho IA, Cruz JC. 1993. Práticas culturais do milho. In: Recom técnicas para o Cultiv do milho. Brasília: Empresa Brasileira de Pesquisa Agropecuária; p. 113–127.
  • Prudente VHR, Martins VS, Vieira DC, Silva N. R de F e, Adami M, Sanches ID. 2020. Limitations of cloud cover for optical remote sensing of agricultural areas across South America. Remote Sens Appl Soc Environ. 20(May):100414.
  • Roy DP, Wulder MA, Loveland TR, C.E W, Allen RG, Anderson MC, Helder D, Irons JR, Johnson DM, Kennedy R, et al. 2014. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens Environ. 145:154–172. http://dx.doi.org/10.1016/j.rse.2014.02.001.
  • Santos CLM, de O, Lamparelli RAC, Dantas Araújo Figueiredo GK, Dupuy S, Boury J, Luciano A. d S, Torres R, da S, Le Maire G. 2019. Classification of Crops, Pastures, and Tree Plantations along the Season with Multi-Sensor Image Time Series in a Subtropical Agricultural Region. Remote Sens. 11(3):334. http://www.mdpi.com/2072-4292/11/3/334.
  • Schaaf CB, Gao F, Strahler AH, Lucht W, Li X, Tsang T, Strugnell NC, Zhang X, Jin Y, Muller J-P, et al. 2002. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens Environ. 83(1-2):135–148. http://linkinghub.elsevier.com/retrieve/pii/S0034425702000913.
  • Senf C, Leitão PJ, Pflugmacher D, van der Linden S, Hostert P. 2015. Mapping land cover in complex Mediterranean landscapes using Landsat: Improved classification accuracies from integrating multi-seasonal and synthetic imagery. Remote Sens Environ. 156:527–536.
  • Silva CA, Nanni MR, Teodoro PE, Silva GFC. 2017. Vegetation Indices for Discrimination of Soybean Areas: A New Approach. Agron J. 109(4):1331–1343. https://dl.sciencesocieties.org/publications/aj/abstracts/109/4/1331.
  • Silva Junior CA, da Nanni MR, Oliveira-Júnior JF, de Cezar E, Teodoro PE, Delgado RC, Shiratsuchi LS, Shakir M, Chicati ML. 2019. Object-based image analysis supported by data mining to discriminate large areas of soybean. Int J Digit Earth. 12(3):270–292.
  • Soterroni AC, Ramos FM, Mosnier A, Fargione J, Andrade PR, Baumgarten L, Pirker J, Obersteiner M, Kraxner F, Câmara G, et al. 2019. Expanding the Soy Moratorium to Brazil's Cerrado. Sci Adv. 5(7):eaav7336. http://advances.sciencemag.org/lookup/doi/10.1126/sciadv.aav7336.
  • Soudani K, Le Maire G, Dufrêne E, François C, Delpierre N, Ulrich E, Cecchini S. 2008. Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Remote Sens Environ. 112(5):2643–2655.
  • Souza CHW, Mercante E, Johann JA, Lamparelli RAC, Uribe-Opazo MA. 2015. Mapping and discrimination of soya bean and corn crops using spectro-temporal profiles of vegetation indices. Int J Remote Sens. 36(7):1809–1824. http://www.tandfonline.com/doi/full/10.1080/01431161.2015.1026956.
  • Vermote E, Justice C, Claverie M, Franch B. 2016. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens Environ. 185:46–56. http://dx.doi.org/10.1016/j.rse.2016.04.008.
  • Vermote EF, Roger JC, Ray JP. 2015. MODIS Surface Reflectance User’s Guide - Collection 6. http://modis-sr.ltdri.org.
  • Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, et al. 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 17(3):261–272.
  • Walker JJ, De Beurs KM, Wynne RH, Gao F. 2012. Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology. Remote Sens Environ. 117:381–393. http://dx.doi.org/10.1016/j.rse.2011.10.014.
  • Wang Q, Atkinson PM. 2018. Spatio-temporal fusion for daily Sentinel-2 images. Remote Sens Environ. 204:31–42.
  • Whitcraft AK, Vermote EF, Becker-Reshef I, Justice CO. 2015. Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations. Remote Sens Environ. 156:438–447. http://dx.doi.org/10.1016/j.rse.2014.10.009.
  • Willmott CJ, Robeson SM, Matsuura K. 2012. A refined index of model performance. Int J Climatol. 32(13):2088–2094. http://doi.wiley.com/10.1002/joc.2419.
  • Xie D, Gao F, Sun L, Anderson M. 2018. Improving spatial-temporal data fusion by choosing optimal input image pairs. Remote Sens. 10(7):1142, 1–25. http://www.mdpi.com/2072-4292/10/7/1142.
  • Xu M, Jia X, Pickering M. 2014. Automatic cloud removal for Landsat 8 OLI images using cirrus band. In: 2014 IEEE Geosci Remote Sens Symp [Internet]. [place unknown]: IEEE; p. 2511–2514. http://ieeexplore.ieee.org/document/6946983/
  • Xu M, Jia X, Pickering M. 2015. Cloud effects removal via sparse representation. In: 2015 IEEE Int Geosci Remote Sens Symp [Internet]. Vol. 2015-Novem. [place unknown]: IEEE; p. 605–608. http://ieeexplore.ieee.org/document/7325836/.
  • Yan L, Roy DP. 2014. Automated crop field extraction from multi-temporal Web Enabled Landsat Data. Remote Sens Environ. 144:42–64. http://dx.doi.org/10.1016/j.rse.2014.01.006.
  • Yin Q, Liu M, Cheng J, Ke Y, Chen X. 2019. Mapping Paddy Rice Planting Area in Northeastern China Using Spatiotemporal Data Fusion and Phenology-Based Method. Remote Sens. 11(14):1699.
  • Zhang M, Lin H. 2019. Object-based rice mapping using time-series and phenological data. Adv Sp Res [Internet]. 63(1):190–202..
  • Zhong L, Gong P, Biging GS. 2012. Phenology-based Crop Classification Algorithm and its Implications on Agricultural Water Use Assessments in California’s Central Valley. Photogramm Eng Remote Sensing. 78(8):799–813. ]. http://cat.inist.fr/?aModele=afficheN&cpsidt=26196709.
  • Zhong L, Gong P, Biging GS. 2014. Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sens Environ [Internet]. 140:1–13. http://dx.doi.org/10.1016/j.rse.2013.08.023.
  • Zhong L, Hu L, Yu L, Gong P, Biging GS. 2016. Automated mapping of soybean and corn using phenology. ISPRS J Photogramm Remote Sens. 119:151–164.
  • Zhong L, Yu L, Li X, Hu L, Gong P. 2016. Rapid corn and soybean mapping in US Corn Belt and neighboring areas. Sci Rep. 6(May):36240. http://www.nature.com/articles/srep36240.
  • Zhou F, Zhong D. 2020. Kalman filter method for generating time-series synthetic Landsat images and their uncertainty from Landsat and MODIS observations. Remote Sens Environ [Internet]. 239. 239:111628..
  • Zhu L, Radeloff VC, Ives AR. 2017. Improving the mapping of crop types in the Midwestern U.S. by fusing Landsat and MODIS satellite data. Int J Appl Earth Obs Geoinf. 58(February):1–11. http://linkinghub.elsevier.com/retrieve/pii/S0303243417300120.
  • Zhu X, Cai F, Tian J, Williams TK. 2018. Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and Future Directions. Remote Sens. 10(4):527. http://www.mdpi.com/2072-4292/10/4/527.
  • Zhu X, Chen J, Gao F, Chen X, Masek JG. 2010. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens Environ. 114(11):2610–2623.
  • Zhu X, Helmer EH, Gao F, Liu D, Chen J, Lefsky MA. 2016. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sens Environ. 172:165–177. http://dx.doi.org/10.1016/j.rse.2015.11.016.
  • Zhu Y, Yang G, Yang H, Wu J, Lei L, Zhao F, Fan L, Zhao C. 2020. Identification of apple orchard planting year based on spatiotemporally fused satellite images and clustering analysis of foliage phenophase. Remote Sens. 12(7):1199, 1–22. https://www.mdpi.com/2072-4292/12/7/1199
  • Zhu Z, Wang S, Woodcock CE. 2015. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images. Remote Sens Environ. 159(January):269–277.
  • Zhu Z, Woodcock CE. 2012. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens Environ [Internet. 118:83–94. http://dx.doi.org/10.1016/j.rse.2011.10.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.