431
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Flash-flood propagation susceptibility estimation using weights of evidence and their novel ensembles with multicriteria decision making and machine learning

, ORCID Icon, ORCID Icon, , ORCID Icon, , , ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 8361-8393 | Received 23 Jul 2021, Accepted 26 Oct 2021, Published online: 15 Nov 2021

References

  • Abderrezzak KEK, Paquier A, Mignot E. 2009. Modelling flash flood propagation in urban areas using a two-dimensional numerical model. Nat Hazards. 50(3):433–460.
  • Agarwal E, Agarwal R, Garg R, Garg P. 2013. Delineation of groundwater potential zone: An AHP/ANP approach. J Earth Syst Sci. 122(3):887–898.
  • Aguilar MA, del Mar Saldaña M, Aguilar FJ. 2013. Assessing geometric accuracy of the orthorectification process from GeoEye-1 and WorldView-2 panchromatic images. Int J Appl Earth Obs Geoinform. 21:427–435.
  • Ahmadlou M, Karimi M, Alizadeh S, Shirzadi A, Parvinnejhad D, Shahabi H, Panahi M. 2019. Flood susceptibility assessment using integration of adaptive network-based fuzzy inference system (ANFIS) and biogeography-based optimization (BBO) and BAT algorithms (BA). Geocarto Int. 34(11):1252–1272.
  • Akıncı H, Özalp AY, Turgut B. 2013. Agricultural land use suitability analysis using GIS and AHP technique. Comput Electron Agric. 97:71–82.
  • Al-Abadi AM. 2018. Mapping flood susceptibility in an arid region of southern Iraq using ensemble machine learning classifiers: a comparative study. Arab J Geosci. 11:218.
  • Al-Abadi AM, Shahid S. 2015. A comparison between index of entropy and catastrophe theory methods for mapping groundwater potential in an arid region. Environ Monit Assess. 187:576.
  • Ali SA, Parvin F, Pham QB, Vojtek M, Vojteková J, Costache R, Linh NTT, Nguyen HQ, Ahmad A, Ghorbani MA. 2020. GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-criteria decision-making approach, naïve Bayes tree, bivariate statistics and logistic regression: A case of Topľa basin, Slovakia. Ecol Indic. 117:106620..
  • Althuwaynee OF, Pradhan B, Park H-J, Lee JH. 2014. A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena. 114:21–36.
  • Althuwaynee OF, Pradhan B, Park H-J, Lee JH. 2014. A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides 11(6):1063–1078.
  • Ameri AA, Pourghasemi HR, Cerda A. 2018. Erodibility prioritization of sub-watersheds using morphometric parameters analysis and its mapping: A comparison among TOPSIS, VIKOR, SAW, and CF multi-criteria decision making models. Sci Total Environ. 613-614:1385–1400.
  • Anquetin S, Braud I, Vannier O, Viallet P, Boudevillain B, Creutin J-D, Manus C. 2010. Sensitivity of the hydrological response to the variability of rainfall fields and soils for the Gard 2002 flash-flood event. J Hydrol. 394(1-2):134–147.
  • Antonetti M, Horat C, Sideris IV, Zappa M. 2019. Ensemble flood forecasting considering dominant runoff processes–Part 1: Set-up and application to nested basins (Emme, Switzerland. Nat Hazards Earth Syst Sci. 19(1):19–40. ).
  • Antronico L, Coscarelli R, De Pascale F, Condino F. 2019. Social Perception of Geo-Hydrological Risk in the Context of Urban Disaster Risk Reduction: A Comparison between Experts and Population in an Area of Southern Italy. Sustainability 11(7):2061.
  • Arabameri A, Pradhan B, Rezaei K, Sohrabi M, Kalantari Z. 2019. GIS-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted regression tree algorithms. J Mt Sci. 16(3):595–618.
  • Arabameri A, Saha S, Chen W, Roy J, Pradhan B, Bui DT. 2020. Flash flood susceptibility modelling using functional tree and hybrid ensemble techniques. J Hydrol. 587:125007.
  • Avand M, Janizadeh S, Naghibi SA, Pourghasemi HR, Khosrobeigi Bozchaloei S, Blaschke T. 2019. A Comparative Assessment of Random Forest and k-Nearest Neighbor Classifiers for Gully Erosion Susceptibility Mapping. Water. 11:2076.
  • Azareh A, Rafiei Sardooi E, Choubin B, Barkhori S, Shahdadi A, Adamowski J, Shamshirband S. 2019. Incorporating multi-criteria decision-making and fuzzy-value functions for flood susceptibility assessment. Geocarto Int. :1–21. https://doi.org/10.1080/10106049.2019.1695958
  • Breiman L, Friedman JH, Olshen RA, Stone CJ. 1984. Classification and regression trees. Belmont, CA. Wadsworth Int Group. 432:151–166.
  • Bui DT, Bui Q-T, Nguyen Q-P, Pradhan B, Nampak H, Trinh PT. 2017. A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agric For Meteorol. 233:32–44.
  • Bui DT, Lofman O, Revhaug I, Dick O. 2011. Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat Hazards. 59(3):1413–1444.
  • Bui DT, Moayedi H, Kalantar B, Osouli A, Pradhan B, Nguyen H, Rashid ASA. 2019. A novel swarm intelligence—Harris hawks optimization for spatial assessment of landslide susceptibility. Sensors. 19:3590.
  • Bui DT, Tsangaratos P, Ngo P-TT, Pham TD, Pham BT. 2019. Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods. Sci Total Environ. 668:1038–1054.
  • Canbek G, Sagiroglu S, Temizel TT, Baykal N. 2017. Binary classification performance measures/metrics: A comprehensive visualized roadmap to gain new insights. Paper presented at:2017 International Conference on Computer Science and Engineering (UBMK), IEEE, p. 821–826.
  • Cao C, Xu P, Wang Y, Chen J, Zheng L, Niu C. 2016. Flash flood hazard susceptibility mapping using frequency ratio and statistical index methods in coalmine subsidence areas. Sustainability 8(9):948.
  • Chao L, Zhang K, Wang J, Feng J, Zhang M. 2021. A comprehensive evaluation of five evapotranspiration datasets based on ground and grace satellite observations: implications for improvement of evapotranspiration retrieval algorithm. Remote Sens (Basel, Switzerland). 13(12):2414.
  • Chapi K, Singh VP, Shirzadi A, Shahabi H, Bui DT, Pham BT, Khosravi K. 2017. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ Model Softw. 95:229–245.
  • Chen Z, Liang S, Ke Y, Yang Z, Zhao H. 2019. Landslide susceptibility assessment using evidential belief function, certainty factor and frequency ratio model at Baxie River basin, NW China. Geocarto Int. 34(4):348–367.
  • Chen W, Li W, Hou E, Bai H, Chai H, Wang D, Cui X, Wang Q. 2015. Application of frequency ratio, statistical index, and index of entropy models and their comparison in landslide susceptibility mapping for the Baozhong Region of Baoji, China. Arab J Geosci. 8(4):1829–1841.
  • Chen W, Li H, Hou E, Wang S, Wang G, Panahi M, Li T, Peng T, Guo C, Niu C, et al. 2018. GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Sci Total Environ. 634:853–867.
  • Chen W, Pradhan B, Li S, Shahabi H, Rizeei HM, Hou E, Wang S. 2019. Novel hybrid integration approach of bagging-based fisher’s linear discriminant function for groundwater potential analysis. Nat Resour Res. :1–20.
  • Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A. 2019. An Ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ. 651(Pt 2):2087–2096.
  • Costache R. 2014a. Using GIS techniques for assessing lag time and concentration time in small river basins. Case study: Pecineaga river basin. Romania Geogr Tech. 9:31–38.
  • Costache R. 2014b. Estimating multiannual average runoff depth in the middle and upper sectors of. Buzău River Basin Geogr Tech. 9:21–29.
  • Costache R. 2014c. Assessing monthly average runoff depth in Sărățel river basin. Romania Analele Stiintifice Ale Univ Alexandru Ioan Cuza Din Iasi-Ser Geogr. 60:97–110.
  • Costache R. 2019. Flash-Flood Potential assessment in the upper and middle sector of Prahova river catchment (Romania). A comparative approach between four hybrid models. Sci Total Environ. 659:1115–1134.
  • Costache R, Bao Pham Q, Corodescu-Roșca E, Cîmpianu C, Hong H, Thi Thuy Linh N, Ming Fai C, Najah Ahmed A, Vojtek M, Muhammed Pandhiani S, et al. 2020. Using GIS, Remote Sensing, and Machine Learning to Highlight the Correlation between the Land-Use/Land-Cover Changes and Flash-Flood Potential. Remote Sens 12, 1422. 12(9):1422.,
  • Costache R, Bui DT. 2019. Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: A case study at the Putna river catchment of Romania. Sci Total Environ. 691:1098–1118.
  • Costache R, Hong H, Pham QB. 2020. Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models. Sci Total Environ. 711:134514..
  • Costache R, Pham QB, Sharifi E, Linh NTT, Abba S, Vojtek M, Vojteková J, Nhi PTT, Khoi DN. 2020. Flash-flood susceptibility assessment using multi-criteria decision making and machine learning supported by remote sensing and GIS techniques. Remote Sens. 12(1):106.
  • Costache R, Tien Bui D. 2020. Identification of areas prone to flash-flood phenomena using multiple-criteria decision-making, bivariate statistics, machine learning and their ensembles. Sci Total Environ. 712:136492..
  • Costache R, Zaharia L. 2017. Flash-flood potential assessment and mapping by integrating the weights-of-evidence and frequency ratio statistical methods in GIS environment–case study: Bâsca Chiojdului River catchment (Romania). J Earth Syst Sci. 126:59.
  • Dahri N, Abida H. 2017. Monte Carlo simulation-aided analytical hierarchy process (AHP) for flood susceptibility mapping in Gabes Basin (southeastern Tunisia). Environ Earth Sci. 76:302.
  • Dano UL. 2020. Flash flood impact assessment in Jeddah City: An analytic hierarchy process approach. Hydrology 7(1):10.
  • Dano UL. 2021. An AHP-based assessment of flood triggering factors to enhance resiliency in Dammam, Saudi Arabia. GeoJournal 1–16. https://doi.org/10.1007/s10708-020-10363-5.
  • Dewals B, Giron E, Ernst J, Hecq W, Pirotton M. 2008. Integrated assessment of flood protection measures in the context of climate change: hydraulic modelling and economic approach. WIT Trans Ecol Environ. 108:149–159.
  • Dodangeh E, Choubin B, Eigdir AN, Nabipour N, Panahi M, Shamshirband S, Mosavi A. 2020. Integrated machine learning methods with resampling algorithms for flood susceptibility prediction. Sci Total Environ. 705:135983.
  • Dottori F, Martina MLV, Figueiredo R. 2018. A methodology for flood susceptibility and vulnerability analysis in complex flood scenarios. J Flood Risk Management. 11:S632–S645.
  • Dou J, Yamagishi H, Zhu Z, Yunus AP, Chen CW. 2018. TXT-tool 1.081-6.1 A comparative study of the binary logistic regression (BLR) and artificial neural network (ANN) models for GIS-based spatial predicting landslides at a regional scale. In: Landslide dynamics: ISDR-ICL landslide interactive teaching tools. Berlin, Germany: Springer, p. 139–151.
  • Fan P, Deng R, Qiu J, Zhao Z, Wu S. 2021. Well logging curve reconstruction based on kernel ridge regression. Arab J Geosci.
  • Feng S, Zuo C, Zhang L, Yin W, Chen Q. 2021. Generalized framework for non-sinusoidal fringe analysis using deep learning. Photon Res. 9(6):1084.
  • Fontanine I, Costache R. 2013. Using GIS techniques for surface runoff potential analysis in the Subcarpathian area between Buzãu and Slãnic rivers, in Romania. Cinq Cont. 3:47–57.
  • Fowler H, Wilby R. 2010. Detecting changes in seasonal precipitation extremes using regional climate model projections: Implications for managing fluvial flood risk. Water Resour Res. 46(3)
  • Gessesse B, Bewket W, Bräuning A. 2015. Model‐based characterization and monitoring of runoff and soil erosion in response to land use/land cover changes in the Modjo watershed, Ethiopia. Land Degrad Develop. 26(7):711–724.
  • Ghosh A, Kar SK. 2018. Application of analytical hierarchy process (AHP) for flood risk assessment: a case study in Malda district of West Bengal, India. Nat Hazards. 94(1):349–368.
  • Hapciuc O-E, Romanescu G, Minea I, Iosub M, Enea A, Sandu I. 2016. Flood susceptibility analysis of the cultural heritage in the Sucevita catchment (Romania). Int J Conserv Sci. 7(2):501–510.
  • He Y, Dai L, Zhang H. 2020. Multi-branch deep residual learning for clustering and beamforming in user-centric network. IEEE Commun Lett. 24(10):2221–2225.
  • Hofmann J, Schüttrumpf H. 2019. Risk-based early warning system for pluvial flash floods: Approaches and foundations. Geosciences 9(3):127.
  • Hong H, Pradhan B, Xu C, Bui DT. 2015. Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena. 133:266–281.
  • Hong H, Tsangaratos P, Ilia I, Liu J, Zhu A-X, Chen W. 2018. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Sci Total Environ. 625:575–588.
  • Hosseini FS, Choubin B, Mosavi A, Nabipour N, Shamshirband S, Darabi H, Haghighi AT. 2020. Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: application of the simulated annealing feature selection method. Sci Total Environ. 711:135161.
  • Hosseini FS, Sigaroodi SK, Salajegheh A, Moghaddamnia A, Choubin B. 2021. Towards a flood vulnerability assessment of watershed using integration of decision-making trial and evaluation laboratory, analytical network process, and fuzzy theories. Environ Sci Pollut Res. :1–12. https://doi.org/10.1007/s11356-021-14534-w.
  • Hu B, Wu Y, Wang H, Tang Y, Wang C. 2021. Risk mitigation for rockfall hazards in steeply dipping coal seam: a case study in Xinjiang, northwestern China. Geom Nat Hazard Risk. 12(1):988–1014.
  • Janizadeh S, Avand M, Jaafari A, Phong TV, Bayat M, Ahmadisharaf E, Prakash I, Pham BT, Lee S. 2019. Prediction Success of Machine Learning Methods for Flash Flood Susceptibility Mapping in the Tafresh Watershed, Iran. Sustainability 11(19):5426.
  • Kanani-Sadat Y, Arabsheibani R, Karimipour F, Nasseri M. 2019. A new approach to flood susceptibility assessment in data-scarce and ungauged regions based on GIS-based hybrid multi criteria decision-making method. J Hydrol. 572:17–31.
  • Kavzoglu T, Sahin EK, Colkesen I. 2014. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11(3):425–439.
  • Khosravi K, Nohani E, Maroufinia E, Pourghasemi HR. 2016. A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Nat Hazards. 83(2):947–987.
  • Leandro J, Djordjević S, Chen A, Savić D, Stanić M. 2011. Calibration of a 1D/1D urban flood model using 1D/2D model results in the absence of field data. Water Sci Technol. 64(5):1016–1024.
  • Lee B-J, Kim S. 2019. Gridded flash flood risk index coupling statistical approaches and TOPLATS land surface model for mountainous areas. Water 11(3):504.
  • Lei X, Chen W, Avand M, Janizadeh S, Kariminejad N, Shahabi H, Costache R, Shahabi H, Shirzadi A, Mosavi A. 2020. GIS-based machine learning algorithms for gully erosion susceptibility mapping in a semi-arid region of Iran. Remote Sens. 12(15):2478.
  • Liu H, Shi Z, Li J, Liu C, Meng X, Du Y, Chen J. 2021. Detection of road cavities in urban cities by 3D ground-penetrating radar. Geophysics. 86(3):WA25–A33.
  • Markolf SA, Hoehne C, Fraser A, Chester MV, Underwood BS. 2019. Transportation resilience to climate change and extreme weather events–Beyond risk and robustness. Transp Policy. 74:174–186.
  • Midi H, Sarkar SK, Rana S. 2010. Collinearity diagnostics of binary logistic regression model. J Interdiscip Math. 13(3):253–267.
  • Miles J. 2014. Tolerance and variance inflation factor. Hoboken, NJ: Wiley.
  • Mohammady M, Pourghasemi HR, Amiri M. 2019. Assessment of land subsidence susceptibility in Semnan plain (Iran): a comparison of support vector machine and weights of evidence data mining algorithms. Nat Hazards 99:951–971.
  • Mosavi A, Golshan M, Janizadeh S, Choubin B, Melesse AM, Dineva AA. 2020. Ensemble models of GLM, FDA, MARS, and RF for flood and erosion susceptibility mapping: a priority assessment of sub-basins. Geocarto Int. :1–20. https://doi.org/10.1080/10106049.2020.1829101.
  • Mujumdar P. 2001. Flood wave propagation. Resonance. 6(5):66–73.
  • Ngo P-T, Hoang N-D, Pradhan B, Nguyen Q, Tran X, Nguyen Q, Nguyen V, Samui P, Tien Bui D. 2018. A novel hybrid swarm optimized multilayer neural network for spatial prediction of flash floods in tropical areas using Sentinel-1 SAR imagery and geospatial data. Sensors 18(11):3704.
  • O'Callaghan JF, Mark DM. 1984. The extraction of drainage networks from digital elevation data. Comput Vis Graph Image Process. 28(3):323–344.
  • Pham BT, Nguyen-Thoi T, Qi C, Van Phong T, Dou J, Ho LS, Van Le H, Prakash I. 2020. Coupling RBF neural network with ensemble learning techniques for landslide susceptibility mapping. Catena. 195:104805.
  • Pham BT, Pradhan B, Bui DT, Prakash I, Dholakia M. 2016. A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environ Model Softw. 84:240–250.
  • Pham BT, Shirzadi A, Bui DT, Prakash I, Dholakia M. 2018. A hybrid machine learning ensemble approach based on a radial basis function neural network and rotation forest for landslide susceptibility modeling: A case study in the Himalayan area, India. Int J Sediment Res. 33(2):157–170.
  • Pourghasemi HR, Beheshtirad M, Pradhan B. 2016. A comparative assessment of prediction capabilities of modified analytical hierarchy process (M-AHP) and Mamdani fuzzy logic models using Netcad-GIS for forest fire susceptibility mapping. Geomat Nat Hazards Risk 7(2):861–885.
  • Pradhan B. 2010. Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Adv Space Res. 45(10):1244–1256.
  • Prăvălie R, Costache R. 2013. The vulnerability of the territorial-administrative units to the hydrological phenomena of risk (flash-floods). Case study: the subcarpathian sector of Buzău catchment. Analele Univ Din Oradea–Seria Geogr. 23:91–98.
  • Prăvălie R, Costache R. 2014. The analysis of the susceptibility of the flash-floods’ genesis in the area of the hydrographical basin of Bāsca Chiojdului river/Analiza susceptibilitatii genezei viiturilor īn aria bazinului hidrografic al rāului Bāsca Chiojdului. Forum Geogr. 13:39–49. http://dx.doi.org/10.5775/fg.2067-4635.2014.089.i.
  • Qasem SN, Shamsuddin SM. 2011. Radial basis function network based on time variant multi-objective particle swarm optimization for medical diseases diagnosis. Appl Soft Comput. 11(1):1427–1438.
  • Saaty TL. 1980. The analytical hierarchy process, planning, priority Resource Allocation. New York, NY: RWS Publ..
  • Sajedi‐Hosseini F, Choubin B, Solaimani K, Cerdà A, Kavian A. 2018. Spatial prediction of soil erosion susceptibility using a fuzzy analytical network process: application of the fuzzy decision making trial and evaluation laboratory approach. Land Degrad Dev. 29(9):3092–3103.
  • Shen X, Liu B, Jiang M, Lu X. 2020. Marshland loss warms local land surface temperature in China. Geophy Res Lett. 47(6).
  • Shen X, Jiang M, Lu X, Liu X, Liu B, Zhang J, Wang X, Tong S, Lei G, Wang S, et al. 2021. Aboveground biomass and its spatial distribution pattern of herbaceous marsh vegetation in China Science. Earth Sci. 64:1115–1125
  • Sun C-C. 2010. A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods. Expert Syst Appl. 37(12):7745–7754.
  • Talukdar S, Ghose B, Salam R, Mahato S, Pham QB, Linh NTT, Costache R, Avand M. 2020. Flood susceptibility modeling in Teesta River basin, Bangladesh using novel ensembles of bagging algorithms. Stoch Environ Res Risk Assess. 34:2277–2300.
  • Urbanowicz RJ, Meeker M, La Cava W, Olson RS, Moore JH. 2018. Relief-based feature selection: introduction and review. J Biomed Inform. 85:189–203.
  • Vakhshoori V, Zare M. 2018. Is the ROC curve a reliable tool to compare the validity of landslide susceptibility maps? Geomat Nat Hazards Risk 9(1):249–266.
  • Wang Y, Hong H, Chen W, Li S, Panahi M, Khosravi K, Shirzadi A, Shahabi H, Panahi S, Costache R. 2019. Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. J Environ Manage. 247:712–729.
  • Wheeler D, Tiefelsdorf M. 2005. Multicollinearity and correlation among local regression coefficients in geographically weighted regression. J Geograph Syst. 7(2):161–187.
  • Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Yu PS, et al. 2008. Top 10 algorithms in data mining. Knowl Inf Syst. 14(1):1–37.,
  • Yariyan P, Janizadeh S, Phong TV, Nguyen HD, Costache R, Le HV, Pham BT, Pradhan B, Tiefenbacher JP. 2020. Improvement of Best First Decision Trees Using Bagging and Dagging Ensembles for Flood-risk Mapping. Water Resour Manag. 34(9):3037–3053.
  • Yeon Y-K, Han J-G, Ryu KH. 2010. Landslide susceptibility mapping in Injae, Korea, using a decision tree. Eng Geol. 116(3-4):274–283.
  • Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM. 2016. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 13(5):839–856.
  • Zaharia L, Costache R, Prăvălie R, Ioana-Toroimac G. 2017. Mapping flood and flooding potential indices: a methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania). Front Earth Sci. 11(2):229–247.
  • Zaharia L, Costache R, Prăvălie R, Minea G. 2015. Assessment and mapping of flood potential in the Slănic catchment in Romania. J Earth Syst Sci. 124(6):1311–1324.
  • Zare M, Pourghasemi HR, Vafakhah M, Pradhan B. 2013. Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arab J Geosci. 6(8):2873–2888.
  • Zhang C-X, Wang G-W, Zhang J-S. 2012. An empirical bias–variance analysis of DECORATE ensemble method at different training sample sizes. J Appl Stat. 39(4):829–850.
  • Zhang K, Wang S, Bao H, Zhao X. 2019. Characteristics and influencing factors of rainfall-induced landslide and debris flow hazards in Shaanxi Province. Nat Hazards Earth Syst Sci. 19(1):93–105.
  • Zhang K, Ali A, Antonarakis A, Moghaddam M, Saatchi S, Tabatabaeenejad A, Chen R, Jaruwatanadilok S, Cuenca R, Crow WT, et al. 2019. The sensitivity of North American terrestrial carbon fluxes to spatial and temporal variation in soil moisture: an analysis using radar‐derived estimates of root‐zone soil moisture. J Geophys Res Biogeosci. 124(11):3208–3231.
  • Zhang Z, Luo C, Zhao Z. 2020. Application of probabilistic method in maximum tsunami height prediction considering stochastic seabed topography. Nat Hazards. 104(3):2511–2530.
  • Zhang C, Kodestani H, Masri SF, Wang J, Sun L. 2021. Data-driven system parameter change detection for a chain-like uncertainties embedded structure. Struct Control Health Monit.
  • Zhao G, Pang B, Xu Z, Peng D, Xu L. 2019. Assessment of urban flood susceptibility using semi-supervised machine learning model. Sci Total Environ. 659:940–949.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.