326
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Mineral prospectivity mapping: a potential technique for sustainable mineral exploration and mining activities – a case study using the copper deposits of the Tagmout basin, Morocco

, , , , , , , , & show all
Pages 9110-9131 | Received 09 May 2021, Accepted 05 Dec 2021, Published online: 22 Dec 2021

References

  • Afzal P, Khakzad A, Moarefvand P, Omran NR, Esfandiari B, Alghalandis YF. 2010. Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran. J Geochem Explor. 104(1-2):34–46.
  • Afzal P, Mirzaei M, Yousefi M, Adib A, Khalajmasoumi M, Zarifi AZ, Foster P, Yasrebi AB. 2016. Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis. J Afr Earth Sci. 119:139–149.
  • Afzal P, Yousefi M, Mirzaie M, Ghadiri-Sufi E, Ghasemzadeh S, Daneshvar Saein L. 2019. Delineation of podiform-type chromite mineralization using geochemical mineralization prospectivity index and staged factor analysis in Balvard area (SE Iran). J Min Env. 10(3):705–715.
  • Algouti A, Algouti A, Chbani B, Zaim M. 2001. Sedimentation et volcanisme synsédimentaire de la série de base de l’Adoudounien infra-cambrien à travers deux exemples de l’Anti-Atlas du Maroc [Sedimentation and syn-sedimentary volcanism of the infra-Cambrian Adoudounian Basal series interpreted from two areas in the Moroccan Anti-Atlas mountains]. J Afr Earth Sci. 32(4):541–556.
  • Almasi A, Jafarirad A, Afzal P, Rahimi M. 2015. Prospecting of gold mineralization in Saqez area (NW Iran) using geochemical, geophysical and geological studies based on multifractal modelling and principal component analysis. Arab J Geosci. 8(8):5935–5947.
  • Asladay A, Barodi EB, Maacha L, Zinbi Y. 1998. Les minéralisations cuprifères du Maroc. Chron Rech Min. 531-532:29–44.
  • Austin JR, Blenkinsop TG. 2008. The Cloncurry lineament: geophysical and geological evidence for a deep crustal structure in the Eastern Succession of the Mount Isa Inlier. Precambrian Res. 163(1-2):50–68.
  • Austin JR, Blenkinsop TG. 2009. Local to regional scale structural controls on mineralisation and the importance of a major lineament in the eastern Mount Isa Inlier, Australia: review and analysis with autocorrelation and weights of evidence. Ore Geol Rev. 35(3-4):298–316.
  • Benssaou M, Hamoumi N. 2001. L’Anti-Atlas occidental du Maroc: étude sédimentologique et reconstitutions paléogéographiques au Cambrien inférieur [The western Anti-Atlas of Morocco: sedimentological and palaeogeographical formation studies in the Early Cambrian. J Afr Earth Sci. 32(3):351–372.
  • Benziane F, Yazidi A, Prost AE. 1983. Le passage du précambrien, le Cambrien précoce volcanique et sédimentaire de l’Anti-Atlas oriental, comparaisons avec l’Anti-Atlas occidental [The transition from the latest Precambrian to the volcanic and sedimentary early Cambrian of the eastern Anti-Atlas; comparisons with the western Anti-Atlas. Bull Soc Geol Fr. 7(4):549–556.
  • Bonham-Carter GF. 1994. Geographic information systems for geoscientists: Modelling with GIS. 1st ed. Oxford: Pergamon.
  • Bonham-Carter GF, Agterberg FP, Wright DF. 1989. Weights of evidence modelling: A new approach to mapping mineral potential. In: Agterberg FP, Bonham-Carter GF, editors. Statistical applications in the earth sciences. Ottawa: Geological Survey of Canada (Paper no. 89-9); p. 171–183.
  • Bouabdellah M, Slack J. 2016. Geologic and metallogenic framework of North Africa. In: Bouabdellah M, Slack J, editors. Mineral Deposits of North Africa. Cham: Springer; p. 3–81.
  • Boudda A, Choubert G. 1972. Sur la limite inférieure du Cambrien au Maroc. CR Acad Sci Paris. 275:5–8.
  • Bourque H, Barbanson L, Sizaret S, Branquet Y, Ramboz C, Ennaciri A, El Ghorfi M, Badra L. 2015. Contribution to the synsedimentary versus epigenetic origin of the Cu mineralizations hosted by terminal Neoproterozoic to Cambrian formations of the Bou Azzer-El Graara inlier: New insights from the Jbel Laassel deposit (Anti Atlas, Morocco). J Afr Earth Sci. 107:108–118.
  • Carranza EJM. 2010. Catchment basin modelling of stream sediment anomalies revisited: incorporation of EDA and fractal analysis. Geochem Explor Environ Anal. 10(2):171–187.
  • Carranza EJM, Sadeghi M. 2010. Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden). Ore Geol Rev. 38(3):219–241.
  • Carranza EJM, van Ruitenbeek FJA, Hecker C, van der Meijde M, van der Meer FD. 2008. Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain. Int J Appl Earth Obs Geoinf. 10(3):374–387.
  • Chabane A, Boyer C. 1979. Séries volcaniques et minéralisations cuprifère du Précambrien supérieur de Tanguerfa, Anti-Atlas, Maroc. CR Acad Sci Paris. 288(1):5–8.
  • Chen Z, Zhang L, Wan B, Wu H, Cleven N. 2011. Geochronology and geochemistry of the Wunugetushan porphyry Cu-Mo deposit in NE China, and their geological significance. Ore Geol Rev. 43(1):92–105.
  • Cheng Q. 2007. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geol Rev. 32(1-2):314–324.
  • Cheng Q, Agterberg FP, Ballantyne SB. 1994. The separation of geochemical anomalies from background by fractal methods. J Geochem Explor. 51(2):109–130.
  • Choubert G. 1963. Essai de mise au point du problème des "ignimbrites". Bull Volcanol. 25(1):123–140.
  • Choubert G, Clariond L, Hindermeyer J. 1952. Livret-guide de l’excursion C36: Anti-Atlas central et oriental. Congrès Géologique International, XIXe session-Alger-1952,Série: Maroc. 11:89–98.
  • Choubert G, Faure Muret A. 1973. Nouvelles données sur les massifs précambriens des Ida Ou-Zeddoute et des Ida Ou-Zekri, NW d’Igherm, Anti-Atlas (Maroc). CR Acad Sci Paris. 276(4):477–480.
  • Daviran M, Maghsoudi A, Cohen DR, Ghezelbash R, Yilmaz H. 2020. Assessment of Various Fuzzy c-Mean Clustering Validation Indices for Mapping Mineral Prospectivity: Combination of Multifractal Geochemical Model and Mineralization Processes. Nat Resour Res. 29(1):229–246.
  • Farahbakhsh E, Chandra R, Eslamkish T, Müller RD. 2019. Modeling geochemical anomalies of stream sediment data through a weighted drainage catchment basin method for detecting porphyry Cu-Au mineralization. J Geochem Explor. 204:12–32.
  • Filzmoser P, Hron K, Reimann C. 2009. Principal components analysis for compositional data with outliers. Environmetrics. 20(6):621–632.
  • Gasquet D, Ennih N, Liégeois JP, Soulaimani A, Michard A. 2008. The Pan-African belt. In: Michard A, Saddiqi O, Chalouan A, Frizon Lamotte D, editors. Continental evolution: The geology of Morocco. Cham: Springer; p. 33–64.
  • Ghezelbash R, Maghsoudi A, Carranza EJM. 2019a. An improved data-driven multiple criteria decision-making procedure for spatial modeling of mineral prospectivity: adaption of prediction–area plot and logistic functions. Nat Resour Res. 28(4):1299–1316.
  • Ghezelbash R, Maghsoudi A, Carranza EJM. 2019b. Performance evaluation of RBF-and SVM-based machine learning algorithms for predictive mineral prospectivity modeling: integration of SA multifractal model and mineralization controls. Earth Sci Inform. 12(3):277–293.
  • Ghezelbash R, Maghsoudi A, Carranza EJM. 2020. Sensitivity analysis of prospectivity modeling to evidence maps: Enhancing success of targeting for epithermal gold, Takab district, NW Iran. Ore Geol Rev. 120:103394.
  • Helvoort PJ, Filzmoser P, Gaans PFM. 2005. Sequential Factor Analysis as a new approach to multivariate analysis of heterogeneous geochemical datasets: an application to a bulk chemical characterization of fluvial deposits (Rhine–Meuse delta, The Netherlands). Appl Geochem. 20(12):2233–2251.
  • Henson P, Blewett R, Roy I, Miller J, Czarnota K. 2010. 4 D architectures and tectonic evolution of the Laverton region, eastern Yligarn Craton, West Australia. Precambrian Res. 183(2):338–355.
  • Johnson CC, Flight DMA, Lister TR, Strutt MH. 2001. Le rapport final pour les travaux de recherches géologique pour la réalisation de cinq cartes géochimiques au 1/100 000 dans le domaine de l’Anti-Atlas (Maroc). Keyworth, Nottingham: British Geological Survey. Commissioned Report Series, CR/01/031.
  • Kaiser HF. 1958. The varimax criteria for analytical rotation in factor analysis. Psychometrika. 23(3):187–200.
  • Kouhestani H, Ghaderi M, Afzal P, Zaw K. 2020. Classification of pyrite types using fractal and stepwise factor analyses in the Chah Zard gold-silver epithermal deposit, central Iran. Geochem Explor Environ Anal. 20(4):496–508.
  • Kouyaté D, Söderlund U, Youbi N, Ernst R, Hafid A, Ikenne M, Soulaimani A, Bertrand H, El Janati M, R'kha Chaham K. 2013. U-Pb baddeleyite and zircon ages of 2040 Ma, 1650 Ma and 885 Ma on dolerites in the West African Craton (Anti-Atlas inliers): Possible links to break up of Precambrian supercontinents. Lithos. 174:71–84.
  • Levresse G, Bouabdellah M, Cheilletz A, Gasquet D, Maacha L, Tritlla J, Banks D, Samir Mr A. 2016. Degassing as the main ore-forming process at the giant Imiter Ag-Hg vein deposit in the Anti-Atlas Mountains, Morocco. In: Bouabdellah M, Slack J, editors. Mineral deposits of North Africa. Cham: Springer; p. 85–106.
  • Mandelbrot BB. 1983. The fractal geometry of nature. New York (NY): W. H. Freeman and Company.
  • Meigoony MS, Afzal P, Gholinejad M, Yasrebi AB, Sadeghi B. 2014. Delineation of geochemical anomalies using factor analysis and multifractal modeling based on stream sediments data in Sarajeh 1: 100,000 sheet, Central Iran. Arab J Geosci. 7(12):5333–5343.
  • Micklethwaite S, Sheldon HA, Baker T. 2010. Active fault and shear processes and their implications for mineral deposit formation and discovery. J Struct Geol. 32(2):151–165.
  • Mihalasky MJ, Bonham-Carter GF. 2001. Lithodiversity and its spatial association with metallic mineral sites, Great Basin of Nevada. Nat Resourc Res. 10(3):209–226.
  • Nykänen V, Groves DI, Ojala VJ, Eilu P, Gardoll SJ. 2008. Reconnaissance-scale conceptual fuzzy-logic prospectivity modelling for iron oxide copper-gold deposits in the northern Fennoscandian Shield, Finland. Aust J Earth Sci. 55(1):25–38.
  • Ouchchen M, Boutaleb S, Abia EH, El Azzab D, Abioui M, Mickus KL, Miftah A, Echogdali FZ, Dadi B. 2021. Structural interpretation of the Igherm region (Western Anti Atlas, Morocco) from an aeromagnetic analysis: Implications for copper exploration. J Afr Earth Sci. 176:104140.
  • Oudra M. 1988. La structuration panafricaine dans la partie nord-ouest de la boutonnière d’Irhem (Anti-Atlas occidental-Maroc)[dissertation]. Marrakech: Cadi Ayyad University.
  • Oudra M, Beraaouz H, Ikenne M, Gasquet D, Soulaimani A. 2005. La tectonique panafricaine du secteur d’Igherm: implication des dômes extensifs tardi à post-orogéniques (Anti-Atlas occidental, Maroc). Estud Geol. 61(3-6):177–189.
  • Oummouch A, Essaifi A, Zayane R, Maddi O, Zouhair M, Maacha L. 2017. Geology and metallogenesis of the sediment-hosted Cu-Ag deposit of Tizert (Igherm inlier, Anti-Atlas Copperbelt, Morocco). Geofluids. 2017:7508484.
  • Parsa M, Maghsoudi A, Yousefi M, Sadeghi M. 2016. Prospectivity modeling of porphyry-Cu deposits by identification and integration of efficient mono-elemental geochemical signatures. J Afr Earth Sci. 114:228–241.
  • Pham LT. 2020. A comparative study on different filters for enhancing potential feld source boundaries: synthetic examples and a case study from the Song Hong Trough (Vietnam). Arab J Geosci. 13(15):723.
  • Pham LT. 2021. A high resolution edge detector for interpreting potential field data: A case study from the Witwatersrand basin, South Africa. J Afr Earth Sci. 178:104190.
  • Pham LT, Eldosouky AM, Oksum E, Saada SA. 2020a. A new high-resolution filter for source edge detection of potential data. Geocarto Int. 1–18. DOI:10.1080/10106049.2020.1849414
  • Pham LT, Oksum E, Do TD, Nguyen DV, Eldosouky AM. 2021a. On the performance of phase-based filters for enhancing lateral boundaries of magnetic and gravity sources: a case study of the Seattle Uplift. Arab J Geosci. 14(2):129.
  • Pham LT, Oksum E, Le DV, Ferreira FJF, Le ST. 2021b. Edge detection of potential field sources using the softsign function. Geocarto Int. 1–14.DOI:10.1080/10106049.2021.1882007
  • Pham LT, Oksum E, Vu MD, Vo QT, Le-Viet KD, Eldosouky AM. 2021c. An improved approach for detecting ridge locations to interpret the potential field data for more accurate structural mapping: a case study from Vredefort dome area (South Africa). J Afr Earth Sci. 175:104099.
  • Pham LT, Vu MD, Le ST. 2021d. Performance evaluation of amplitude- and phase-based methods for estimating edges of potential field sources. Iran J Sci Technol Trans Sci. 45(4):1327–1339.
  • Pham LT, Vu TV, Le-Thi S, Trinh PT. 2020b. Enhancement of potential field source boundaries using an improved logistic filter. Pure Appl Geophys. 177(11):5237–5249.
  • Pirajno F. 2010. Intracontinental strike-slip faults, associated magmatism, mineral systems and mantle dynamics: Examples from NW China and Altay-Sayan (Siberia). J Geodyn. 50(3-4):325–346.
  • Poot J, Verhaert M, Dekoninck A, Oummouch A, El Basbas A, Maacha L, Yans J. 2020. Characterization of weathering processes of the giant copper deposit of Tizert (Igherm Inlier, Anti-Atlas, Morocco). Minerals. 10(7):620.
  • Porwal A, Carranza EJM, Hale M. 2006. A hybrid fuzzy weights-of-evidence model for mineral potential mapping. Nat Resour Res. 15(1):1–14.
  • Pouclet A, Aarab A, Fekkak A, Benharref M. 2007. Geodynamic evolution of the northwestern Paleo-Gondwanan margin in the Moroccan Atlas at the Precambrian-Cambrian boundary. In: Linnemann U, Nance R, Kraft P, Zulauf G, editors. The evolution of the Rheic Ocean: From Avalonian-Cadomian active margin to Alleghenian-Variscan collision, Vol. 423. Boulder: Geol Soc Am Spec Pap.; p. 27–60.
  • Pouit G. 1966. Paléogéographie et répartition des minéralisations stratiforme de cuivre dans l’Anti-Atlas occidental. Chron Rech Min. 34(356):279–289.
  • Pourgholam MM, Afzal P, Yasrebi AB, Gholinejad M, Wetherelt A. 2021. Detection of geochemical anomalies using a fractal-wavelet model in Ipack area, Central Iran. J Geochem Explor. 220:106675.
  • Reid AB, Allsop JM, Granser H, Millett AT, Somerton IW. 1990. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics. 55(1):80–91.
  • Roshanravan B, Kreuzer OP, Bruce M, Davis J, Briggs M. 2020. Modelling gold potential in the Granites-Tanami Orogen, NT, Australia: a comparative study using continuous and data-driven techniques. Ore Geol Rev. 125:103661.
  • Sahabi M, Aslanian D, Olivet JL. 2004. Un nouveau point de départ pour l’histoire de l’Atlantique central [A new starting point for the history of the central Atlantic. CR Geosci. 336(12):1041–1052.
  • Salem A, Williams S, Fairhead D, Smith R, Ravat D. 2008. Interpretation of magnetic data using tilt-angle derivatives. Geophysics. 73(1):L1–L10.
  • Sanusi SO, Amigun JO. 2020. Logistic-based translation of orogenic gold forming processes into mappable exploration criteria for fuzzy logic mineral exploration targeting in the Kushaka Schist Belt, North-Central Nigeria. Nat Resour Res. 29(6):3505–3526.
  • Shahbazi S, Ghaderi M, Afzal P. 2021. Prognosis of gold mineralization phases by multifractal modeling in the Zehabad epithermal deposit, NW Iran. Iran J Earth Sci. 13(1):31–40.
  • Shamseddin Meigooni M, Lotfi M, Afzal P, Nezafati N, Kargar Razi M. 2021. Application of multivariate geostatistical simulation and fractal analysis for detection of rare earth elements (REEs) geochemical anomalies in Esfordi phosphate mine, Central Iran. Geochem Explor Environ Anal. 21(2):1–17.
  • Soulaimani A. 1998. Interactions socle/couverture dans l’Anti-Atlas occidental (Maroc): rifting fini-Protérozoïque et orogenèse hercynienne [dissertation]. Marrakech: Caddi Ayyad University.
  • Soulaimani A, Bouabdelli M, Piqué A. 2003. L’extension continentale au Néoprotérozoïque supérieur-Cambrien inférieur dans l’Anti-Atlas (Maroc)[The Upper Neoproterozoic-Lower Cambrian continental extension in the Anti-Atlas (Morocco). Bull Soc Geol Fr. 174(1):83–92. French.
  • Spadoni M. 2006. Geochemical mapping using a geomorphologic approach based on catchments. J Geochem Explor. 90(3):183–196.
  • Wang C, Carranza EJM, Zhang S, Zhang J, Liu X, Zhang D, Sun X, Duan C. 2013. Characterization of primary geochemical haloes for gold exploration at the Huanxiangwa gold deposit, China. J Geochem Explor. 124:40–58.
  • Wang X, Xia Q, Li T, Leng S, Li Y, Kang L, Chen Z, Wu L. 2019. Application of fractal models to delineate mineralized zones in the Pulang porphyry copper deposit, Yunnan, southwestern China. Nonlin Processes Geophys. 26(3):267–282.
  • Wang YM, Chin KS, Yang JB. 2007. Measuring the performances of decision making units using geometric average efficiency. J Oper Res Soc. 58(7):929–937.
  • Wu JZ, Zhang Q. 2011. Multicriteria decision making method based on intuitionistic fuzzy weighted entropy. Expert Syst Appl. 38(1):916–922.
  • Xu Z, Cai X. 2010. Recent advances in intuitionistic fuzzy information aggregation. Fuzzy Optim Decis Making. 9(4):359–381.
  • Yousefi M, Carranza EJM. 2015a. Geometric average of spatial evidence data layers: A GIS based multicriteria decision-making approach to mineral prospectivity mapping. Comput Geosci. 83:72–79.
  • Yousefi M, Carranza EJM. 2015b. Prediction–area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Comput Geosci. 79:69–81.
  • Yousefi M, Carranza EJM. 2015c. Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Comput Geosci. 74:97–109.
  • Yousefi M, Carranza EJM. 2016. Data driven index overlay and Boolean logic mineral prospectivity modeling in Greenfields exploration. Nat Resour Res. 25(1):3–18.
  • Yousefi M, Nykänen V. 2016. Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. J Geochem Explor. 164:94–106.
  • Yousefi M, Kamkar-Rouhani A, Carranza EJM. 2012. Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. J Geochem Explor. 115:24–35.
  • Yousefi M, Kamkar-Rouhani A, Carranza EJM. 2014. Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochem Explor Environ Anal. 14(1):45–58.
  • Yang Z, Hou Z, White NC, Chang Z, Li Z, Song Y. 2009. Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet. Ore Geol Rev. 36(1-3):133–159.
  • Zadeh LA. 1965. Fuzzy sets. Inf Control. 8(3):338–353.
  • Zhang X, Liu P. 2010. Method for aggregating triangular fuzzy intuitionistic fuzzy information and its application to decision making. Technol Econ Dev Econ. 16(2):280–290.
  • Zuo R. 2011a. Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China. Appl Geochem. 26:S271–S273.
  • Zuo R. 2011b. Identifying geochemical anomalies associated with Cu and Pb-Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). J Geochem Explor. 111(1-2):13–22.
  • Zuo R. 2020. Geodata Science-Based Mineral Prospectivity Mapping: A Review. Nat Resour Res. 29(6):3415–3424.
  • Zuo R, Agterberg FP, Cheng Q, Yao L. 2009. Fractal characterization of the spatial distribution of geological point processes. Int J Appl Earth Obser Geoinf. 11(6):394–402.
  • Zuo R, Xia Q, Wang H. 2013. Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization. Appl Geochem. 28:202–211.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.