481
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Comparison of landslide susceptibility models and their robustness analysis: a case study from the NW Himalayas, Pakistan

, , , , , & show all
Pages 9204-9241 | Received 02 Aug 2021, Accepted 05 Dec 2021, Published online: 22 Dec 2021

References

  • Aditian A, Kubota T, Shinohara Y. 2018. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology. 318:101–111.
  • Ali A, Faisal S, Rehman K, Khan S, Nijat U. 2015. Tectonic imprints of the Hazara Kashmir Syntaxis on the Northwest Himalayan fold and thrust belt, North Pakistan. Arab J Geosci. 8(11):9857–9876.
  • Ali A, Habib U, Rehman AU, Zada N, Abidin ZU, Ismail M. 2016. Tectonic imprints of the Hazara Kashmir syntaxis on the mesozoic rocks exposed in Munda, Mohmand Agency, Northwest Pakistan. Acta Geol Sin‐Engl Ed. 90(2):440–455.
  • Ali S, Biermanns P, Haider R, Reicherter K. 2019. Landslide susceptibility mapping by using a geographic information system (GIS) along the China–Pakistan Economic Corridor (Karakoram Highway). Nat Hazards Earth Syst Sci. 19(5):999–1022.
  • Ali SA, Parvin F, Vojteková J, Costache R, Linh NTT, Pham QB, Vojtek M, Gigović L, Ahmad A, Ghorbani MA. 2021. GIS-based landslide susceptibility modeling: a comparison between fuzzy multi-criteria and machine learning algorithms. Geosci Front. 12(2):857–876.
  • Allison P. 1999. Multicollinearity. Logistic regression using the SAS system. Theory and application. Cary: SAS Institute Inc.; p. 48–51.
  • Ba Q, Chen Y, Deng S, Yang J, Li H. 2018. A comparison of slope units and grid cells as mapping units for landslide susceptibility assessment. Earth Sci Inform. 11(3):373–388.
  • Bacha AS, Shafique M, van der Werff H. 2018. Landslide inventory and susceptibility modelling using geospatial tools, in Hunza-Nagar valley, northern Pakistan. J Mt Sci. 15(6):1354–1370.
  • Baig M, Lawrence R. 1987. Precambrian to early paleozoic orogenesis in the Himalaya. Kashmir J Geol. 5:1–22.
  • Baig MS. 2006. Active faulting and earthquake deformation in Hazara-Kashmir syntaxis. Azad Kashmir, northwest Himalaya, Pakistan, Extended Abstracts, International Conference on 8 October 2005 Earthquake in Pakistan: Its implications and hazard mitigation. Geol. Survey of Pakistan Islamabad. p. 27–28.
  • Baig MS, Yeats RS, Pervez S, Jadoon IA, Khan MR, Sidiqui I, Lisa M, Saleem M, Masood B, Sohail A. 2010. Active tectonics, October 8, 2005 earthquake deformation, active uplift, scarp morphology and seismic geohazards microzonation, Hazara-Kashmir Syntaxis, Northwest Himalayas, Pakistan. J of Himal Earth Sci. 43:17–21.
  • Basharat M, Rohn J, Baig MS, Khan MR. 2014a. Spatial distribution analysis of mass movements triggered by the 2005 Kashmir earthquake in the Northeast Himalayas of Pakistan. Geomorphology. 206:203–214.
  • Basharat M, Rohn J, Baig MS, Khan MR, Schleier M. 2014b. Large scale mass movements triggered by the Kashmir earthquake 2005. J Mt Sci. 11(1):19–30.
  • Basharat M, Shah HR, Hameed N. 2016. Landslide susceptibility mapping using GIS and weighted overlay method: a case study from NW Himalayas, Pakistan. Arab J Geosci. 9(4):292.
  • Bashir F, Hanif U. 2018. Climate change extremes and rainfall variability over Pakistan. Pakistan: Global Change Impact Study Centre – Pakistan Meteorological Department.
  • Basu T, Pal S. 2019. RS-GIS based morphometrical and geological multi-criteria approach to the landslide susceptibility mapping in Gish River Basin, West Bengal, India. Adv Space Res. 63(3):1253–1269.
  • Beven KJ, Kirkby MJ. 1979. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrol Sci Bull. 24(1):43–69.
  • Bossart P, Dietrich D, Greco A, Ottiger R, Ramsay JG. 1988. The tectonic structure of the Hazara-Kashmir Syntaxis, southern Himalayas, Pakistan. Tectonics. 7(2):273–297.
  • Bui DT, Tsangaratos P, Nguyen V-T, Liem NV, Trinh PT. 2020. Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. CATENA. 188:104426.
  • Bui DT, Tuan TA, Klempe H, Pradhan B, Revhaug I. 2016. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides. 13(2):361–378.
  • Calkins JA, Offield TW, Abdullah SK, Ali ST. 1975. Geology of the southern Himalaya in Hazara. Pakistan and Adjacent Areas. United States Geological Survey Professional Paper. p. 716C.
  • Catani F, Lagomarsino D, Segoni S, Tofani V. 2013. Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Nat Hazards Earth Syst Sci. 13(11):2815–2831.
  • Çellek S. 2020. Effect of the slope angle and its classification on landslide. Nat Hazards Earth Syst Sci Discuss. 2020:1–23.
  • Chang K-T, Merghadi A, Yunus AP, Pham BT, Dou J. 2019. Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques. Sci Rep. 9(1):12296.
  • Chen T, Zhu L, Niu R-Q, Trinder CJ, Peng L, Lei T. 2020. Mapping landslide susceptibility at the Three Gorges Reservoir, China, using gradient boosting decision tree, random forest and information value models. J Mt Sci. 17(3):670–685.
  • Chen W, Chai H, Sun X, Wang Q, Ding X, Hong H. 2016. A GIS-based comparative study of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility mapping. Arab J Geosci. 9(3):204.
  • Chen W, Chen X, Peng J, Panahi M, Lee S. 2021. Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer. Geosci Front. 12(1):93–107.
  • Chen W, Li W, Hou E, Zhao Z, Deng N, Bai H, Wang D. 2014. Landslide susceptibility mapping based on GIS and information value model for the Chencang District of Baoji, China. Arab J Geosci. 7(11):4499–4511.
  • Chen W, Panahi M, Tsangaratos P, Shahabi H, Ilia I, Panahi S, Li S, Jaafari A, Ahmad BB. 2019a. Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility. CATENA. 172:212–231.
  • Chen W, Peng J, Hong H, Shahabi H, Pradhan B, Liu J, Zhu AX, Pei X, Duan Z. 2018a. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Sci Total Environ. 626:1121–1135.
  • Chen W, Sun Z, Han J. 2019b. Landslide susceptibility modeling using integrated ensemble weights of evidence with logistic regression and random forest models. Appl Sci. 9(1):171.
  • Chen W, Xie X, Peng J, Wang J, Duan Z, Hong H. 2017a. GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models. Geomatics Nat Hazards Risk. 8(2):950–973.
  • Chen W, Xie X, Wang J, Pradhan B, Hong H, Bui DT, Duan Z, Ma J. 2017b. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA. 151:147–160.
  • Chen W, Zhang S, Li R, Shahabi H. 2018b. Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Sci Total Environ. 644:1006–1018.
  • Cohen J. 1960. A coefficient of agreement for nominal scales. Educ Psychol Meas. 20(1):37–46.
  • Costache R, Arabameri A, Moayedi H, Pham QB, Santosh M, Nguyen H, Pandey M, Pham BT. 2021. Flash-flood potential index estimation using fuzzy logic combined with deep learning neural network, Naïve Bayes, XGBoost and classification and regression tree. Geocarto International; p. 1–28. DOI: 10.1080/10106049.2021.1948109
  • Cristianini N, Shawe-Taylor J. 2000. An introduction to support vector machines and other kernel-based learning methods. Cambridge: Cambridge University Press.
  • Dang V-H, Bui DT, Tran X-L, Hoang N-D. 2019. Enhancing the accuracy of rainfall-induced landslide prediction along mountain roads with a GIS-based random forest classifier. Bull Eng Geol Environ. 78(4):2835–2849.
  • Ding Q, Chen W, Hong H. 2017. Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping. Geocarto Int. 32(6):619–639.
  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, et al. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 36(1):27–46.
  • Dou J, Bui DT, Yunus AP, Jia K, Song X, Revhaug I, Xia H, Zhu Z. 2015. Optimization of causative factors for landslide susceptibility evaluation using remote sensing and GIS data in parts of Niigata. PLoS One. 10(7):e0133262.
  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen C-W, Khosravi K, Yang Y, Pham BT. 2019. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci Total Environ. 662:332–346.
  • Dou J, Yunus AP, Merghadi A, Shirzadi A, Nguyen H, Hussain Y, Avtar R, Chen Y, Pham BT, Yamagishi H. 2020. Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Sci Total Environ. 720:137320.
  • Du G, Zhang Y, Yang Z, Guo C, Yao X, Sun D. 2019. Landslide susceptibility mapping in the region of eastern Himalayan syntaxis, Tibetan Plateau, China: a comparison between analytical hierarchy process information value and logistic regression-information value methods. Bull Eng Geol Environ. 78(6):4201–4215.
  • Du G-L, Zhang Y-S, Iqbal J, Yang Z-H, Yao X. 2017. Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed, Gansu Province. J Mt Sci. 14(2):249–268.
  • Es-Smairi A, El Moutchou B, Touhami AEO. 2021. Landslide susceptibility assessment using analytic hierarchy process and weight of evidence methods in parts of the Rif chain (northernmost Morocco). Arab J Geosci. 14(14):1346.
  • Frank E, Hall MA, Witten IH. 2016. The WEKA workbench. Online appendix for data mining: practical machine learning tools and techniques.In: Witten IH, Frank E, Hall MA et al., editors. Data Mining (Fourth Edition). Morgan Kaufmann; p. 553–571.
  • Frattini P, Crosta G, Carrara A. 2010. Techniques for evaluating the performance of landslide susceptibility models. Eng Geol. 111(1–4):62–72.
  • Gadtaula A, Dhakal S. 2019. Landslide susceptibility mapping using weight of evidence method in Haku, Rasuwa district, Nepal. J Nepal Geol Soc. 58:163–171.
  • Greco A, Spencer DA. 1993. A section through the Indian Plate, Kaghan Valley, NW Himalaya, Pakistan. Geol Soc. 74(1):221–236.
  • Guo C, Montgomery DR, Zhang Y, Wang K, Yang Z. 2015. Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan Plateau, China. Geomorphology. 248:93–110.
  • Guzzetti F. 2005. Landslide hazard and risk assessment [PhD thesis]. Rheinische Friedrich-Wilhelms-Universität, Bonn. p. 389.
  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K-T. 2012. Landslide inventory maps: new tools for an old problem. Earth Sci Rev. 112(1–2):42–66.
  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M. 2006. Estimating the quality of landslide susceptibility models. Geomorphology. 81(1–2):166–184.
  • Hadji R, Boumazbeur Ae, Limani Y, Baghem M, Chouabi AeM, Demdoum A. 2013. Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: a case study of Souk Ahras region, NE Algeria. Quat Int. 302:224–237.
  • Hong H, Ilia I, Tsangaratos P, Chen W, Xu C. 2017. A hybrid fuzzy weight of evidence method in landslide susceptibility analysis on the Wuyuan area, China. Geomorphology. 290:1–16.
  • Hong H, Liu J, Zhu AX. 2020. Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble. Sci Total Environ. 718:137231.
  • Hong H, Pourghasemi HR, Pourtaghi ZS. 2016. Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology. 259:105–118.
  • Hong H, Shahabi H, Shirzadi A, Chen W, Chapi K, Ahmad BB, Roodposhti MS, Yari Hesar A, Tian Y, Bui DT. 2019. Landslide susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods. Nat Hazards. 96(1):173–212.
  • Hu X, Mei H, Zhang H, Li Y, Li M. 2021. Performance evaluation of ensemble learning techniques for landslide susceptibility mapping at the Jinping county, Southwest China. Nat Hazards. 105(2):1663–1689.
  • Huang F, Cao Z, Guo J, Jiang S-H, Li S, Guo Z. 2020a. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping. CATENA. 191:104580.
  • Huang F, Cao Z, Jiang S-H, Zhou C, Huang J, Guo Z. 2020b. Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model. Landslides. 17(12):2919–2930.
  • Huang F, Ye Z, Jiang S-H, Huang J, Chang Z, Chen J. 2021. Uncertainty study of landslide susceptibility prediction considering the different attribute interval numbers of environmental factors and different data-based models. CATENA. 202:105250.
  • Huang Y, Zhao L. 2018. Review on landslide susceptibility mapping using support vector machines. CATENA. 165:520–529.
  • Husam AHA-N, Bahareh K, Biswajeet P, Vahideh S. 2019. Conditioning factor determination for mapping and prediction of landslide susceptibility using machine learning algorithms. Proc SPIE, Earth Resources and Environmental Remote Sensing/GIS Applications X. 11156:111560K-1.
  • Hussain A, Yeats RS, Kausar AB, Karim T, Khan T. 2006. The Balakot–Bagh fault that triggered the October 8, earthquake and other active faults in the Himalayan foreland region, Pakistan. International Conference on Earthquake in Pakistan: Extended Abstracts. Quetta: Geological Survey of Pakistan. p. 115–116.
  • Hussain G, Fang X, Usmani NA, Hussain Gardezi SA, Hussain M, Asghar H, Paryal M. Khalid S. 2020.Structural and stratigraphic studies of Hazara-Kashmir Syntaxis, Northwestern Himalaya, Pakistan. North American Academic Research. 03(09):01–14.
  • Hussain G, Singh Y, Singh K, Bhat GM. 2019. Landslide susceptibility mapping along national highway-1 in Jammu and Kashmir State (India). Innov Infrastruct Solut. 4(1):59.
  • Ibrahim SM. 2009. Stratigraphy of Pakistan. Quetta Pakistan: Geological Survey of Pakistan. Geol. Surv. Memoir 22. p. 2539.
  • Ikram N, Gardezi SAH, Ahmad S, Rehman G, Khalid A. 2020. Two and three-dimensional structural modelling of Central Kohat Plateau, Northwestern Himalaya, Pakistan. In: Biswal Tapas K, Ray Sumit K, Grasemann B, editors. Structural geometry of mobile belts of the Indian subcontinent. Cham: Springer International Publishing; p. 131–151.
  • Ilia I, Tsangaratos P. 2016. Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map. Landslides. 13(2):379–397.
  • Ismail-Zadeh A. 2018. Geohazard analysis for disaster risk reduction and sustainability. In: Li J., Alverson K, Beer T, editors. Global change and future earth: the geoscience perspective. special publications of the international union of geodesy and geophysics. Cambridge: Cambridge University Press; p. 349–363.
  • Jiang X, Xu D, Rong J, Ai X, Ai S, Su X, Sheng M, Yang S, Zhang J, Ai Y. 2021. Landslide and aspect effects on artificial soil organic carbon fractions and the carbon pool management index on road-cut slopes in an alpine region. CATENA. 199:105094.
  • Kamp U, Growley BJ, Khattak GA, Owen LA. 2008. GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology. 101(4):631–642.
  • Kanwal S, Atif S, Shafiq M. 2017. GIS based landslide susceptibility mapping of northern areas of Pakistan, a case study of Shigar and Shyok Basins. Geomatics Nat Hazards Risk. 8(2):348–366.
  • Kazmi AH, Rana RA. 1982. Tectonic map of Pakistan 1: 2 000 000: map showing structural features and tectonic stages in Pakistan. Quetta: Geological survey of Pakistan.
  • Keefer DK, Larsen MC. 2007. Geology. Assessing landslide hazards. Science. 316(5828):1136–1138.
  • Khalid A, Ali F, Rehman G, Ikram N, Hussain SB, Sajjad A. 2020. Structural analysis and restoration of the Tolanj Anticlinorium, North Eastern Kohat Basin, Khyber Pakhtunkhwa, Pakistan. J Himal Earth Sci. 53(1):85–94.
  • Khan H, Shafique M, Khan MA, Bacha MA, Shah SU, Calligaris C. 2019. Landslide susceptibility assessment using frequency ratio, a case study of northern Pakistan. Egypt J Remote Sens Space Sci. 22(1):11–24.
  • Kim HG, Lee DK, Park C, Ahn Y, Kil S-H, Sung S, Biging GS. 2018. Estimating landslide susceptibility areas considering the uncertainty inherent in modeling methods. Stoch Environ Res Risk Assess. 32(11):2987–3019.
  • Kuradusenge M, Kumaran S, Zennaro M. 2020. Rainfall-induced landslide prediction using machine learning models: the case of Ngororero district, Rwanda. Int J Environ Res Public Health. 17(11):4147.
  • Lai C, Chen X, Wang Z, Xu C-Y, Yang B. 2018. Rainfall-induced landslide susceptibility assessment using random forest weight at basin scale. Hydrol Res. 49(5):1363–1378.
  • Landis JR, Koch GG. 1977. The measurement of observer agreement for categorical data. Biometrics. 33(1):159–174.
  • Le Fort P. 1975. Himalayas: the collided range. Present knowledge of the continental arc. Am J Sci. 275(1):1–44.
  • Lee S, Hong S-M, Jung H-S. 2017. A support vector machine for landslide susceptibility mapping in Gangwon Province, Korea. Sustainability. 9(1):48.
  • Li L, Lan H, Guo C, Zhang Y, Li Q, Wu Y. 2017. A modified frequency ratio method for landslide susceptibility assessment. Landslides. 14(2):727–741.
  • Liao S-H, Chu P-H, Hsiao P-Y. 2012. Data mining techniques and applications – A decade review from 2000 to 2011. Expert Syst Appl. 39(12):11303–11311.
  • Lin G-F, Chang M-J, Huang Y-C, Ho J-Y. 2017. Assessment of susceptibility to rainfall-induced landslides using improved self-organizing linear output map, support vector machine, and logistic regression. Eng Geol. 224:62–74.
  • Lin Q, Lima P, Steger S, Glade T, Jiang T, Zhang J, Liu T, Wang Y. 2021. National-scale data-driven rainfall induced landslide susceptibility mapping for China by accounting for incomplete landslide data. Geosci Front. 12(6):101248.
  • Liu J, Duan Z. 2018. Quantitative assessment of landslide susceptibility comparing statistical index, index of entropy, and weights of evidence in the Shangnan Area, China. Entropy. 20(11):868.
  • McGuire LA, Rengers FK, Kean JW, Coe JA, Mirus BB, Baum RL, Godt JW. 2016. Elucidating the role of vegetation in the initiation of rainfall‐induced shallow landslides: insights from an extreme rainfall event in the Colorado Front Range. Geophys Res Lett. 43(17):9084–9092.
  • Merghadi A, Yunus AP, Dou J, Whiteley J, ThaiPham B, Bui DT, Avtar R, Abderrahmane B. 2020. Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth Sci Rev. 207:103225.
  • Moayedi H, Mehrabi M, Mosallanezhad M, Rashid ASA, Pradhan B. 2019. Modification of landslide susceptibility mapping using optimized PSO-ANN technique. Eng Comput. 35(3):967–984.
  • Mondal S, Mandal S. 2019. Landslide susceptibility mapping of Darjeeling Himalaya, India using index of entropy (IOE) model. Appl Geomat. 11(2):129–146.
  • Murtagh F. 1991. Multilayer perceptrons for classification and regression. Neurocomputing. 2(5–6):183–197.
  • Mwaniki MW, Kuria DN, Boitt MK, Ngigi TG. 2017. Image enhancements of Landsat 8 (OLI) and SAR data for preliminary landslide identification and mapping applied to the central region of Kenya. Geomorphology. 282:162–175.
  • O’Brien RM. 2007. A caution regarding rules of thumb for variance inflation factors. Qual Quant. 41(5):673–690.
  • Park S, Kim J. 2019. Landslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performance. Appl Sci. 9(5:942.
  • Komarek, P. 2004. Logistic regression for data mining and high-dimensional classification. Technical Report TR-O4-34, Pittsburgh, PA: Robotics Institute, Carnegie Mellon University.
  • Pham BT, Phong TV, Nguyen HD, Qi C, Al-Ansari N, Amini A, Ho LS, Tuyen TT, Yen HPH, Ly H-B, et al. 2020. A comparative study of kernel logistic regression, radial basis function classifier, multinomial naïve bayes, and logistic model tree for flash flood susceptibility mapping. Water. 12(1):239.
  • Pham BT, Pradhan B, Bui DT, Prakash I, Dholakia MB. 2016. A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India). Environ Model Softw. 84:240–250.
  • Pourghasemi HR, Rahmati O. 2018. Prediction of the landslide susceptibility: which algorithm, which precision? CATENA. 162:177–192.
  • Pourghasemi HR, Teimoori Yansari Z, Panagos P, Pradhan B. 2018. Analysis and evaluation of landslide susceptibility: a review on articles published during 2005–2016 (periods of 2005–2012 and 2013–2016). Arab J Geosci. 11(9):193.
  • Pradhan B, Jebur MN. 2017. Spatial prediction of landslide-prone areas through k-nearest neighbor algorithm and logistic regression model using high resolution airborne laser scanning data. In: Pradhan B, editor. Laser scanning applications in landslide assessment. Cham: Springer International Publishing; p. 151–165.
  • Pradhan B, Youssef AM. 2010. Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models. Arab J Geosci. 3(3):319–326.
  • Quevedo RP, Maciel DA, Uehara TDT, Vojtek M, Rennó CD, Pradhan B, Vojteková J, Pham QB. 2021. Consideration of spatial heterogeneity in landslide susceptibility mapping using geographical random forest model. Geocarto Int. 1–20.
  • Rahman A-U, Khan AN, Collins AE. 2014. Analysis of landslide causes and associated damages in the Kashmir Himalayas of Pakistan. Nat Hazards. 71(1):803–821.
  • Regmi AD, Devkota KC, Yoshida K, Pradhan B, Pourghasemi HR, Kumamoto T, Akgun A. 2014. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab J Geosci. 7(2):725–742.
  • Reichenbach P, Busca C, Mondini AC, Rossi M. 2014. The influence of land use change on landslide susceptibility zonation: the briga catchment test site (Messina, Italy). Environ Manage. 54(6):1372–1384.
  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F. 2018. A review of statistically-based landslide susceptibility models. Earth Sci Rev. 180:60–91.
  • Riaz MT, Basharat M, Hameed N, Shafique M, Luo J. 2018. A data-driven approach to landslide-susceptibility mapping in mountainous terrain: case study from the northwest Himalayas, Pakistan. Nat Hazards Rev. 19(4):05018007.
  • Rossi M, Guzzetti F, Reichenbach P, Mondini AC, Peruccacci S. 2010. Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology. 114(3):129–142.
  • Saha A, Saha S. 2020. Comparing the efficiency of weight of evidence, support vector machine and their ensemble approaches in landslide susceptibility modelling: a study on Kurseong region of Darjeeling Himalaya, India. Remote Sens Appl: Soc Environ. 19:100323.
  • Saha S, Roy J, Pradhan B, Hembram TK. 2021. Hybrid ensemble machine learning approaches for landslide susceptibility mapping using different sampling ratios at East Sikkim Himalayan, India. Adv Space Res. 68(7):2819–2840.
  • Searle MP, Khan MA, Fraser JE, Gough SJ, Jan MQ. 1999. The tectonic evolution of the Kohistan-Karakoram collision belt along the Karakoram Highway transect, north Pakistan. Tectonics. 18(6):929–949.
  • Shahabi H, Ahmad BB, Khezri S. 2013. Evaluation and comparison of bivariate and multivariate statistical methods for landslide susceptibility mapping (case study: Zab basin). Arab J Geosci. 6(10):3885–3907.
  • Shahabi H, Hashim M. 2015. Landslide susceptibility mapping using GIS-based statistical models and remote sensing data in tropical environment. Sci Rep. 5(1):9899.
  • Shahabi H, Khezri S, Ahmad BB, Hashim M. 2014. Landslide susceptibility mapping at central Zab basin, Iran: a comparison between analytical hierarchy process, frequency ratio and logistic regression models. CATENA. 115:55–70.
  • Shirzadi A, Bui DT, Pham BT, Solaimani K, Chapi K, Kavian A, Shahabi H, Revhaug I. 2017. Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environ Earth Sci. 76(2):60.
  • Sterlacchini S, Ballabio C, Blahut J, Masetti M, Sorichetta A. 2011. Spatial agreement of predicted patterns in landslide susceptibility maps. Geomorphology. 125(1):51–61.
  • Sujatha ER, Kumaravel P, Rajamanickam GV. 2014. Assessing landslide susceptibility using Bayesian probability-based weight of evidence model. Bull Eng Geol Environ. 73(1):147–161.
  • Taud H, Mas JF. 2018. Multilayer perceptron (MLP). In: Camacho Olmedo MT, Paegelow M, Mas J-F, Escobar F, editors. Geomatic approaches for modeling land change scenarios. Cham: Springer International Publishing; p. 451–455.
  • Torizin J, Fuchs M, Awan AA, Ahmad I, Akhtar SS, Sadiq S, Razzak A, Weggenmann D, Fawad F, Khalid N, et al. 2017. Statistical landslide susceptibility assessment of the Mansehra and Torghar districts, Khyber Pakhtunkhwa Province, Pakistan. Nat Hazards. 89(2):757–784.
  • Tucker CJ. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ. 8(2):127–150.
  • Vakhshoori V, Pourghasemi HR, Zare M, Blaschke T. 2019. Landslide susceptibility mapping using GIS-based data mining algorithms. Water. 11(11):2292.
  • van Westen CJ, Castellanos E, Kuriakose SL. 2008. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol. 102(3–4):112–131.
  • Wang F, Fan X, Yunus AP, Siva Subramanian S, Alonso-Rodriguez A, Dai L, Xu Q, Huang R. 2019a. Coseismic landslides triggered by the 2018 Hokkaido, Japan (Mw 6.6), earthquake: spatial distribution, controlling factors, and possible failure mechanism. Landslides. 16(8):1551–1566.
  • Wang Q, Guo Y, Li W, He J, Wu Z. 2019b. Predictive modeling of landslide hazards in Wen County, northwestern China based on information value, weights-of-evidence, and certainty factor. Geomatics Nat Hazards Risk. 10(1):820–835.
  • White H. 1989. Learning in artificial neural networks: a statistical perspective. Neural Comput. 1(4):425–464.
  • Wooten RM, Witt AC, Miniat CF, Hales TC, Aldred JL. 2016. Frequency and magnitude of selected historical landslide events in the southern Appalachian Highlands of North Carolina and Virginia: relationships to rainfall, geological and ecohydrological controls, and effects, Natural Disturbances and Historic Range of Variation: Type, Frequency, Severity, and Post-disturbance Structure in Central Hardwood Forests USA. Cham: Springer International Publishing; p. 203–262.
  • Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Yu PS, et al. 2008. Top 10 algorithms in data mining. Knowl Inf Syst. 14(1):1–37.
  • Wu Y, Ke Y, Chen Z, Liang S, Zhao H, Hong H. 2020. Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping. CATENA. 187:104396.
  • Yang X, Xie X, Liu DL, Ji F, Wang L. 2015. Spatial interpolation of daily rainfall data for local climate impact assessment over greater sydney region. Adv Meteorol. 2015:1–12.
  • Youssef AM, Pourghasemi HR. 2021. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geosci Front. 12(2):639–655.
  • Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM. 2016. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides. 13(5):839–856.
  • Zhang T, Han L, Chen W, Shahabi H. 2018. Hybrid integration approach of entropy with logistic regression and support vector machine for landslide susceptibility modeling. Entropy. 20(11):884.
  • Zou Z, Yang Y, Fan Z, Tang H, Zou M, Hu X, Xiong C, Ma J. 2020. Suitability of data preprocessing methods for landslide displacement forecasting. Stoch Environ Res Risk Assess. 34(8):1105–1119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.