145
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Estimation of actual evapotranspiration using TDTM model and MODIS derived variables

, ORCID Icon, ORCID Icon &
Pages 9242-9260 | Received 02 Aug 2021, Accepted 05 Dec 2021, Published online: 10 Jan 2022

References

  • Allen RG, Pereira LS, Howell TA, Jensen ME. 2011. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric Water Manage. 98 (6):899–920.
  • Allen RG, Pereira LS, Raes D, Smith M. 2006. Evapotranspiración del cultivo: Guias para la determinación de los requerimientos de agua de los cultivos. Rome, Italy: FAO.
  • Allen RG, Tasumi M, Morse A, Trezza R, Wright JL, Bastiaanssen W, Kramber W, Lorite I, Robison CW. 2007a. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (metric)—applications. J Irrig Drain Eng. 133 (4):395–406.
  • Allen RG, Tasumi M, Trezza R. 2007b. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (metric)—model. J Irrig Drain Eng. 133 (4):380–394.
  • Andersen FH. 2008. Hydrological modeling in a semi-arid area using remote sensing data. Copenhagen, Denmark: University of Copenhagen.
  • Anderson MC, Norman JM, Mecikalski JR, Otkin JA, Kustas WP. 2007. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology. J Geophys Res. 112 (D11):D11112.
  • Beigi E, Tsai FTC. 2014. Gis-based water budget framework for high-resolution groundwater recharge estimation of large-scale humid regions. J Hydrol Eng. 19 (8):05014004.
  • Breiman L. 2001. Random forests. Mach Learn. 45 (1):5–32.
  • Brisson N, Gary C, Justes E, Roche R, Mary B, Ripoche D, Zimmer D, Sierra J, Bertuzzi P, Burger P, et al. 2003. An overview of the crop model stics. Eur J Agron. 18 (3-4):309–332.
  • Carlson TN, Capehart WJ, Gillies RR. 1995. A new look at the simplified method for remote sensing of daily evapotranspiration. Remote Sens Environ. 54 (2):161–167.
  • CHS. 2015. Plan hidrológico de la Demarcación Hidrográfica del Segura. Ciclo de planificación hidrológica 2015-2021.
  • Cleugh HA, Leuning R, Mu Q, Running SW. 2007. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens Environ. 106 (3):285–304.
  • Conesa-García C, Alonso-Sarría F. 2006. El clima de la Región de Murcia. In: Conesa-García C, editor. El Medio Físico de la Región de Murcia. Murcia (Spain): Editum; p. 95–128.
  • Didan K. 2015. Mod13q1 MODIS/TERRA vegetation indices 16-day l3 global 250m sin grid v006. NASA EOSDIS Land Processes DAAC; [accessed 2021 Apr 01]. https://doi.org/10.5067/MODIS/MOD13Q1.006
  • Garcia M, Fernández N, Villagarcía L, Domingo F, Puigdefábregas J, Sandholt I. 2014. Accuracy of the temperature–vegetation dryness index using MODIS under water-limited vs. Energy-limited evapotranspiration conditions. Remote Sens Environ. 149:100–117.
  • Gavahi K, Abbaszadeh P, Moradkhani H, Zhan X, Hain C. 2020. Multivariate assimilation of remotely sensed soil moisture and evapotranspiration for drought monitoring. J Hydrometeorol. 21 (10):2293–2308.
  • Glenn EP, Huete AR, Nagler PL, Hirschboeck KK, Brown P. 2007. Integrating remote sensing and ground methods to estimate evapotranspiration. Crit Rev Plant Sci. 26 (3):139–168.
  • Gomariz-Castillo F. 2016. Estimación de variables y parámetros hidrológicos y análisis de su influencia sobre la modelización hidrológica: Aplicación a los modelos de Témez y Swat. Murcia, Spain: University of Murcia.
  • Herman MR, Nejadhashemi AP, Abouali M, Hernandez-Suarez JS, Daneshvar F, Zhang Z, Anderson MC, Sadeghi AM, Hain CR, Sharifi A. 2018. Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability. J Hydrol. 556:39–49.
  • Hu G, Jia L, Menenti M. 2015. Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011. Remote Sens Environ. 156:510–526.
  • Jamshidi S, Zand-Parsa S, Naghdyzadegan Jahromi M, Niyogi D. 2019a. Application of a simple Landsat-MODIS fusion model to estimate evapotranspiration over a heterogeneous sparse vegetation region. Remote Sens. 11(7):741.
  • Jamshidi S, Zand-Parsa S, Pakparvar M, Niyogi D. 2019b. Evaluation of evapotranspiration over a semiarid region using multiresolution data sources. J Hydrometeorol. 20 (5):947–964.
  • Jiang L, Islam S. 2001. Estimation of surface evaporation map over southern great plains using remote sensing data. Water Resour Res. 37 (2):329–340.
  • Kalma JD, Mcvicar TR, Mccabe MF. 2008. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv Geophys. 29 (4-5):421–469.
  • Kustas WP, Daughtry CST. 1990. Estimation of the soil heat flux/net radiation ratio from spectral data. Agric for Meteorol. 49 (3):205–223.
  • Leuning R, Zhang YQ, Rajaud A, Cleugh H, Tu K. 2008. A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation. Water Resour Res. 44 (10):W10419.
  • Li Z-L, Tang R, Wan Z, Bi Y, Zhou C, Tang B, Yan G, Zhang X. 2009. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors (Basel)). 9 (5):3801–3853.
  • Liaw A, Wiener M. 2002. Classification and regression by RandomForest. R News. 2 (3):18–22. Available from: https://cran.r-project.org/doc/Rnews/.
  • López-Ballesteros A, Serrano-Ortiz P, Kowalski AS, Sánchez-Cañete EP, Scott RL, Domingo F. 2017. Subterranean ventilation of allochthonous CO2 governs net co2 exchange in a semiarid Mediterranean grassland. Agric for Meteorol. 234/235:115–126.
  • Lorenz DJ, Otkin JA, Svoboda M, Hain CR, Anderson MC, Zhong Y. 2017. Predicting u.S. Drought monitor states using precipitation, soil moisture, and evapotranspiration anomalies. Part i: Development of a nondiscrete usdm index. J Hydrometeorol. 18 (7):1943–1962.
  • Minacapilli M, Consoli S, Vanella D, Ciraolo G, Motisi A. 2016. A time domain triangle method approach to estimate actual evapotranspiration: Application in a Mediterranean region using MODIS and MSG-SEVIRI products. Remote Sens Environ. 174:10–23.
  • Minhas PS, Ramos TB, Ben-Gal A, Pereira LS. 2020. Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agric Water Manage. 227:105832.
  • Monteith J, Unsworth M. 2013. Principles of environmental physics, Fourth ed. Boston (MA): Academic Press.
  • Morillas L, Leuning R, Villagarcía L, García M, Serrano-Ortiz P, Domingo F. 2013. Improving evapotranspiration estimates in Mediterranean drylands: The role of soil evaporation. Water Resour Res. 49 (10):6572–6586.
  • Mu Q, Zhao M, Running SW. 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ. 115 (8):1781–1800.
  • Myneni R, Knyazikhin Y, Park T. 2015. Mcd15a2h MODIS/TERRA + AQUA leaf area index/fpar 8-day l4 global 500m sin grid v006. NASA EOSDIS Land Processes DAAC; [accessed 2021 Apr 01]. https://doi.org/10.5067/MODIS/MCD15A2H.006
  • Niyogi D, Jamshidi S, Smith D, Kellner O. 2020. Evapotranspiration climatology of Indiana using in situ and remotely sensed products. J Appl Meteorol Climatol. 59 (12):2093–2111.
  • Norman JM, Anderson MC, Kustas WP, French AN, Mecikalski J, Torn R, Diak GR, Schmugge TJ, Tanner BCW. 2003. Remote sensing of surface energy fluxes at 101-m pixel resolutions. Water Resour Res. 39 (8):1221.
  • Norman JM, Kustas WP, Humes KS. 1995. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric Meteorol. 77 (3-4):263–293.
  • Pastorello G, Trotta C, Canfora E, Chu H, Christianson D, Cheah Y-W, Poindexter C, Chen J, Elbashandy A, Humphrey M, et al. 2020. The fluxnet2015 dataset and the oneflux processing pipeline for eddy covariance data. Sci Data. 7(1):225.,
  • Pereira LS, Allen RG, Smith M, Raes D. 2015. Crop evapotranspiration estimation with\fao\56: Past and future. Agric Water Manage. 147:4–20.
  • Pourmansouri F, Rahimzadegan M. 2020. Evaluation of vegetation and evapotranspiration changes in Iran using satellite data and ground measurements. J Appl Rem Sens. 14 (04):1–1.
  • Price JC. 1990. Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Trans Geosci Remote Sens. 28 (5):940–948.
  • Priestley CHB, Taylor RJ. 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Wea Rev. 100 (2):81–92.
  • Prihodko L, Goward SN. 1997. Estimation of air temperature from remotely sensed surface observations. Remote Sens Environ. 60 (3):335–346.
  • Rahimpour M, Rahimzadegan M. 2021. Assessment of surface energy balance algorithm for land and operational simplified surface energy balance algorithm over freshwater and saline water bodies in Urmia lake basin. Theor Appl Climatol. 143 (3-4):1457–1472.
  • Roerink GJ, Su Z, Menenti M. 2000. S-sebi: A simple remote sensing algorithm to estimate the surface energy balance. Phys Chem Earth Part B. 25 (2):147–157.
  • Ruiz-Álvarez M, Alonso-Sarría F, Gomariz-Castillo F. 2019. Interpolation of instantaneous air temperature using geographical and MODIS derived variables with machine learning techniques. IJGI. 8 (9):382.
  • Schaaf C, Wang Z. 2015. Mcd43a4 MODIS/TERRA + AQUA brdf/albedo nadir brdf adjusted ref daily l3 global - 500m v006. NASA EOSDIS Land Processes DAAC; [accessed 2021 Apr 01]. https://doi.org/10.5067/MODIS/MCD43A4.006
  • Senay GB, Bohms S, Singh RK, Gowda PH, Velpuri NM, Alemu H, Verdin JP. 2013. Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the sseb approach. J Am Water Resour Assoc. 49 (3):577–591.
  • Serrano-Ortiz P, Domingo F, Cazorla A, Were A, Cuezva S, Villagarcía L, Alados-Arboledas L, Kowalski AS. 2009. Interannual co2 exchange of a sparse mediterranean shrubland on a carbonaceous substrate. J Geophys Res. 114(G4):G04015.
  • Serrano-Ortiz P, Kowalski AS, Domingo F, Rey A, Pegoraro E, Villagarcía L, Alados-Arboledas L. 2007. Variations in daytime net carbon and water exchange in a montane shrubland ecosystem in southeast Spain. Photosynt. 45(1):30–35.
  • Su Z. 2002. The surface energy balance system (sebs) for estimation of turbulent heat fluxes. Hydrol Earth Syst Sci. 6 (1):85–100.
  • Tang R, Li Z-L, Tang B. 2010. An application of the t s–vi triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: implementation and validation. Remote Sens Environ. 114 (3):540–551.
  • Teixeira AHDC, Bastiaanssen WGM, Ahmad M-U-D, Bos MG. 2009a. Reviewing sebal input parameters for assessing evapotranspiration and water productivity for the low-middle Sao Francisco river basin, brazil: Part a: calibration and validation. Agric for Meteorol. 149 (3/4):462–476.
  • Teixeira AHDC, Bastiaanssen WGM, Ahmad MU-D, Bos MG. 2009b. Reviewing sebal input parameters for assessing evapotranspiration and water productivity for the low-middle Sao Francisco River Basin, Brazil part b: application to the regional scale. Agric for Meteorol. 149(3-4):477–490.
  • Tian F, Qiu G, Yang Y, Lü Y, Xiong Y. 2013. Estimation of evapotranspiration and its partition based on an extended three-temperature model and MODIS products. J Hydrol. 498:210–220.
  • Wang Y, Li R, Hu J, Wang X, Kabeja C, Min Q, Wang Y. 2021. Evaluations of MODIS and microwave based satellite evapotranspiration products under varied cloud conditions over East Asia Forests. Remote Sens Environ. 264:112606.
  • Wan Z, Hook S, Hulley G. 2015a. Mod11a1 MODIS/TERRA land surface temperature/emissivity daily l3 global 1km sin grid v006. NASA EOSDIS Land Processes DAAC; [accessed 2021 Apr 01]. https://doi.org/10.5067/MODIS/MOD11A1.006
  • Wan Z, Hook S, Hulley G. 2015b. Mod11a2 MODIS/AQUA land surface temperature/emissivity 8-day l3 global 1km sin grid v006. NASA EOSDIS Land Processes DAAC; [accessed 2021 Apr 01]. https://doi.org/10.5067/MODIS/MYD11A2.006
  • Wan Z, Hook S, Hulley G. 2015c. Myd11a1 MODIS/AQUA land surface temperature/emissivity daily l3 global 1km sin grid v006. NASA EOSDIS Land Processes DAAC; [accessed 2021 Apr 01]. https://doi.org/10.5067/MODIS/MYD11A1.006
  • Wan Z, Hook S, Hulley G. 2015d. Myd11a2 MODIS/TERRA land surface temperature/emissivity 8-day l3 global 1km sin grid v006. NASA EOSDIS Land Processes DAAC; [accessed 2021 Apr 01]. https://doi.org/10.5067/MODIS/MOD11A2.006
  • Xiong YJ, Qiu GY. 2014. Simplifying the revised three-temperature model for remotely estimating regional evapotranspiration and its application to a semi-arid steppe. Int J Remote Sens. 35 (6):2003–2027.
  • Xiong YJ, Zhao SH, Tian F, Qiu GY. 2015. An evapotranspiration product for arid regions based on the three-temperature model and thermal remote sensing. J Hydrol. 530:392–404.
  • Yang Y, Shang S, Jiang L. 2012. Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of north china. Agric for Meteorol. 164:112–122.
  • Yaseen ZM, Al-Juboori AM, Beyaztas U, Al-Ansari N, Chau K-W, Qi C, Ali M, Salih SQ, Shahid S. 2020. Prediction of evaporation in arid and semi-arid regions: A comparative study using different machine learning models. Eng Appl Comput Fluid Mech. 14 (1):70–89.
  • Zhang K, Kimball JS, Running SW. 2016. A review of remote sensing based actual evapotranspiration estimation. WIREs Water. 3 (6):834–853.
  • Zhou X, Bi S, Yang Y, Tian F, Ren D. 2014. Comparison of et estimations by the three-temperature model, sebal model and eddy covariance observations. J Hydrol. 519:769–776.
  • Zhu W, Jia S, Lv A. 2017. A universal ts-vi triangle method for the continuous retrieval of evaporative fraction from MODIS products. J Geophys Res Atmos. 122(19):206–227.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.