345
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Prediction of flood risk zone of Ghaggar river basin, India using graph theory technique

, ORCID Icon & ORCID Icon
Pages 9425-9452 | Received 14 Aug 2021, Accepted 13 Dec 2021, Published online: 27 Dec 2021

References

  • Anand J, Gosain AK, Khosa R. 2018. Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model. Sci Total Environ. 644:503–519.
  • Arabameri A, Rezaei K, Cerdà A, Conoscenti C, Kalantari Z. 2019. A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran. Sci Total Environ. 660:443–458.
  • Asare-Kyei D, Forkuor G, Venus V. 2015. Modeling flood hazard zones at the sub-district level with the rational model integrated with GIS and remote sensing approaches. Water. 7(12):3531–3564.
  • Bahremand A, De Smedt F, Corluy J, Liu YB, Poorova J, Velcicka L, Kunikova E. 2007. WetSpa model application for assessing reforestation impacts on floods in Margecany–Hornad Watershed, Slovakia. Water Resour Manage. 21(8):1373–1391..
  • Caloiero T, Coscarelli R, Ferrari E. 2018. Application of the innovative trend analysis method for the trend analysis of rainfall anomalies in Southern Italy. Water Resour Manage. 32(15):4971–4983.
  • Cao C, Xu P, Wang Y, Chen J, Zheng L, Niu C. 2016. Flash flood hazard susceptibility mapping using frequency ratio and statistical index methods in Coalmine subsidence areas. Sustain. 8(9):948.
  • Chakraborty S, Mukhopadhyay S. 2019. Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Coochbehar district of West Bengal, India. Nat Hazards. 99(1):247–274.
  • Chen Y-R, Yeh C-H, Yu B. 2011. Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan. Nat Hazards. 59(3):1261–1276..
  • Costache R, Tien Bui D. 2020. Identification of areas prone to flash-flood phenomena using multiple-criteria decision-making, bivariate statistics, machine learning and their ensembles. Sci Total Environ. 712:136492.
  • CWC. 2014. River Development & Ganga Rejuvenation, Annual Report 2013–14 India.
  • Dahri N, Abida H. 2017. Monte Carlo simulation-aided analytical hierarchy process (AHP) for flood susceptibility mapping in Gabes Basin (southeastern Tunisia). Environ Earth Sci. 76(7):302.
  • Darabi H, Choubin B, Rahmati O, Torabi Haghighi A, Pradhan B, Kløve B. 2019. Urban flood risk mapping using the GARP and QUEST models: a comparative study of machine learning techniques. J Hydrol. 569:142–154.
  • Das S. 2018. Geographic information system and AHP-based flood hazard zonation of Vaitarna basin, Maharashtra, India. Arab J Geosci. 11(19):576.
  • De Brito MM, Evers M. 2016. Multi-criteria decision-making for flood risk management: A survey of the current state of the art. Nat Hazards Earth Syst Sci. 16(4):1019–1033.
  • Ekmekcioğlu Ö, Koc K, Özger M. 2021. District based flood risk assessment in Istanbul using fuzzy analytical hierarchy process. Stoch Environ Res Risk Assess. 35(3):617–637..
  • Fortini M, Bragalli C, Artina S. 2014. Identifying the high-level flow model of water distribution networks using graph theory. Procedia Eng. 89:1192–1199.
  • Fotovatikhah F, Herrera M, Shamshirband S, Chau K, Faizollahzadeh Ardabili S, Piran MJ. 2018. Survey of computational intelligence as basis to big flood management: challenges, research directions and future work. Eng Appl Comput Fluid Mech. 12(1):411–437..
  • Fu M, Fan T, Ding Z, Salih SQ, Al-Ansari N, Yaseen ZM. 2020. Deep learning data-intelligence model based on adjusted forecasting window scale: application in daily streamflow simulation. IEEE Access. 8:32632–32651. https://ieeexplore.ieee.org/document/9007531/.
  • Ghosh A, Kar SK. 2018. Application of analytical hierarchy process (AHP) for flood risk assessment: a case study in Malda district of West Bengal, India. Nat Hazards. 94(1):349–368.
  • Gorai S, Ratha D, Dhir A. 2021. Adapting rainfall variability to flood risk: a case study of the Ghaggar river basin. J Geol Soc India. 97:1347–1354.
  • Haghizadeh A, Siahkamari S, Haghiabi AH, Rahmati O. 2017. Forecasting flood-prone areas using Shannon’s entropy model. J Earth Syst Sci. 126(3):39. 10.1007/s12040-017-0819-x.
  • Hajebi S, Roshani E, Cardozo N, Barrett S, Clarke A, Clarke S. 2016. Water distribution network sectorisation using graph theory and many-objective optimisation. J Hydroinformatics. 18(1):77–95.
  • Hammami S, Zouhri L, Souissi D, Souei A, Zghibi A, Marzougui A, Dlala M. 2019. Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arab J Geosci. 12(21):653.
  • Heidinger H, Carvalho L, Jones C, Posadas A, Quiroz R. 2018. A new assessment in total and extreme rainfall trends over central and southern Peruvian Andes during 1965–2010. Int J Climatol. 38:e998–e1015.
  • Hong H, Panahi M, Shirzadi A, Ma T, Liu J, Zhu A-X, Chen W, Kougias I, Kazakis N. 2018. Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Sci Total Environ. 621:1124–1141. https://www.sciencedirect.com/science/article/pii/S0048969717328176.
  • Kalantari Z, Cavalli M, Cantone C, Crema S, Destouni G. 2017. Flood probability quantification for road infrastructure: Data-driven spatial-statistical approach and case study applications. Sci Total Environ. 581–582:386–398. https://www.sciencedirect.com/science/article/pii/S0048969716328376.
  • Kaya CM, Tayfur G, Gungor O. 2019. Predicting flood plain inundation for natural channels having no upstream gauged stations. J Water Clim Chang. 10(2):360–372. https://iwaponline.com/jwcc/article/10/2/360/38950/Predicting-flood-plain-inundation-for-natural.
  • Kittipongvises S, Phetrak A, Rattanapun P, Brundiers K, Buizer JL, Melnick R. 2020. AHP-GIS analysis for flood hazard assessment of the communities nearby the world heritage site on Ayutthaya Island, Thailand. Int J Disaster Risk Reduct. 48:101612.
  • Kourgialas NN, Karatzas GP. 2017. A national scale flood hazard mapping methodology: The case of Greece—protection and adaptation policy approaches. Sci Total Environ. 601–602:441–452. https://www.sciencedirect.com/science/article/pii/S0048969717313049.
  • Lee M, Kang J, Jeon S. 2012. Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using GIS. In: 2012 IEEE Int Geosci Remote Sens Symp. p. 895–898.
  • Levy JK. 2005. Multiple criteria decision making and decision support systems for flood risk management. Stoch Environ Res Ris Assess. 19(6):438–447.
  • Liu K, Li Z, Yao C, Chen J, Zhang K, Saifullah M. 2016. Coupling the k-nearest neighbor procedure with the Kalman filter for real-time updating of the hydraulic model in flood forecasting. Int J Sediment Res. 31(2):149–158. https://www.sciencedirect.com/science/article/pii/S1001627916300117.
  • Luu C, Von Meding J, Kanjanabootra S. 2018. Assessing flood hazard using flood marks and analytic hierarchy process approach: a case study for the 2013 flood event in Quang Nam, Vietnam. Nat Hazards. 90(3):1031–1050.
  • Lyu H-M, Zhou W-H, Shen S-L, Zhou A-N. 2020. Inundation risk assessment of metro system using AHP and TFN-AHP in Shenzhen. Sustain Cities Soc. 56:102103.
  • Masood M, Takeuchi K. 2012. Assessment of flood hazard, vulnerability and risk of mid-eastern Dhaka using DEM and 1D hydrodynamic model. Nat Hazards. 61(2):757–770.
  • Miao S, Chen F, Li Q, Fan S. 2011. Impacts of urban processes and urbanization on summer precipitation: a case study of heavy rainfall in Beijing on 1 August 2006. J Appl Meteorol Climatol. 50(4):806–825.
  • Mohan KS, Shankar N, Murty BS. 2008. State estimation in water distribution networks using graph-theoretic reduction strategy. J Water Resour Plan Manag. 134(5):395–403.
  • Mondal A, Khare D, Kundu S. 2015. Spatial and temporal analysis of rainfall and temperature trend of India. Theor Appl Climatol. 122(1–2):143–158.
  • Mosavi A, Ozturk P, Chau K. 2018. Flood prediction using machine learning models: literature review. Water. 10(11):1536. https://www.mdpi.com/2073-4441/10/11/1536.
  • Oeurng C, Sauvage S, Sánchez-Pérez J-M. 2011. Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using the SWAT model. J Hydrol. 401(3–4):145–153. https://www.sciencedirect.com/science/article/pii/S0022169411001247.
  • Pagano A, Sweetapple C, Farmani R, Giordano R, Butler D. 2019. Water distribution networks resilience analysis: a comparison between graph theory-based approaches and global resilience analysis. Water Resour Manage. 33(8):2925–2940.
  • Pradhan B. 2010. Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. J Spat Hydrol. 9(2):1–18.
  • Praveen B, Talukdar S, Shahfahad Mahato S, Mondal J, Sharma P, Islam ARMT, Rahman A. 2020. Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Sci Rep. 10(1):10342.
  • Radwan F, Alazba AA, Mossad A. 2019. Flood risk assessment and mapping using AHP in arid and semi-arid regions. Acta Geophys. 67(1):215–229.
  • Rahman M, Ningsheng C, Islam MM, Dewan A, Iqbal J, Washakh RMA, Shufeng T. 2019. Flood susceptibility assessment in Bangladesh using machine learning and multi-criteria decision analysis. Earth Syst Environ. 3(3):585–601.
  • Rahmati O, Pourghasemi HR, Zeinivand H. 2016. Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto Int. 31(1):42–70..
  • Ratha D, Agrawal VP. 2014. Structural modeling and analysis of water resources development and management system: a graph theoretic approach. Water Resour Manage. 28(10):2981–2997.
  • Ratha D, Agrawal VP. 2015. A digraph permanent approach to evaluation and analysis of integrated watershed management system. J Hydrol. 525:188–196.
  • Rincón D, Khan UT, Armenakis C. 2018. Flood risk mapping using GIS and multi-criteria analysis: a greater Toronto area case study. Geosci. 8(8):275.
  • Saaty TL. 1977. A scaling method for priorities in hierarchical structures. J Math Psychol. 15(3):234–281.
  • Shahiri Tabarestani E, Afzalimehr H. 2021. A comparative assessment of multi-criteria decision analysis for flood susceptibility modelling. Geocarto Int. 2021:1–24..
  • Shamshirband S, Hashemi S, Salimi H, Samadianfard S, Asadi E, Shadkani S, Kargar K, Mosavi A, Nabipour N, Chau K-W. 2020. Predicting standardized streamflow index for hydrological drought using machine learning models. Eng Appl Comput Fluid Mech. 14(1):339–350..
  • Souissi D, Zouhri L, Hammami S, Msaddek MH, Zghibi A, Dlala M. 2020. GIS-based MCDM—AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto Int. 35(9):991–1017.
  • Talwar AR. 2011. State Disaster Management Plan Punjab. Punjab, India.
  • Tang Z, Zhang H, Yi S, Xiao Y. 2018. Assessment of flood susceptible areas using spatially explicit, probabilistic multi-criteria decision analysis. J Hydrol. 558:144–158.
  • Taormina R, Chau K-W. 2015. ANN-based interval forecasting of streamflow discharges using the LUBE method and MOFIPS. Eng Appl Artif Intell. 45:429–440. https://linkinghub.elsevier.com/retrieve/pii/S0952197615001748.
  • Tehrany MS, Pradhan B, Jebur MN. 2013. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J Hydrol. 504:69–79. https://www.sciencedirect.com/science/article/pii/S0022169413006872.
  • Tehrany MS, Pradhan B, Mansor S, Ahmad N. 2015. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. CATENA. 125:91–101. https://www.sciencedirect.com/science/article/pii/S034181621400294X.
  • Thanh Son N, Thi Thu Trang N, Bui XT, Thi Da C. 2021. Remote sensing and GIS for urbanization and flood risk assessment in Phnom Penh, Cambodia. Geocarto Int. 2021:1–18..
  • Tien Bui D, Pradhan B, Nampak H, Bui Q-T, Tran Q-A, Nguyen Q-P. 2016. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS. J Hydrol. 540:317–330. https://www.sciencedirect.com/science/article/pii/S002216941630378X.
  • Wang Y, Xu Y, Tabari H, Wang J, Wang Q, Song S, Hu Z. 2020. Innovative trend analysis of annual and seasonal rainfall in the Yangtze River Delta, eastern China. Atmos Res. 231:104673.
  • Wilson KJ. 2017. An investigation of dependence in expert judgement studies with multiple experts. Int J Forecast. 33(1):325–336. 10.1016/j.ijforecast.2015.11.014.
  • Wisner B, Blaikie P, Cannon T, Davis I. 2004. At risk, natural hazard, people’s vulnerability and disasters. Second. Routledge, London.
  • Zhao G, Pang B, Xu Z, Yue J, Tu T. 2018. Mapping flood susceptibility in mountainous areas on a national scale in China. Sci Total Environ. 615:1133–1142. https://www.sciencedirect.com/science/article/pii/S0048969717327419.
  • Zou Q, Zhou J, Zhou C, Song L, Guo J. 2013. Comprehensive flood risk assessment based on set pair analysis-variable fuzzy sets model and fuzzy AHP. Stoch Environ Res Risk Assess. 27(2):525–546..

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.