445
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Combining logistic regression-based hybrid optimized machine learning algorithms with sensitivity analysis to achieve robust landslide susceptibility mapping

, , , , , & show all
Pages 9518-9543 | Received 12 Jun 2021, Accepted 19 Dec 2021, Published online: 05 Jan 2022

References

  • Abdelkarim A, Al-Alola SS, Alogayell HM, Mohamed SA, Alkadi II, Youssef IY. 2020. Mapping of GIS-flood hazard using the geomorphometric-hazard model: case study of the Al-Shamal train pathway in the City of Qurayyat, Kingdom of Saudi Arabia. Geosciences. 10(9):333. https://www.mdpi.com/2076-3263/10/9/333.
  • Abedi Gheshlaghi H, Feizizadeh B. 2017. An integrated approach of analytical network process and fuzzy based spatial decision making systems applied to landslide risk mapping. J African Earth Sci. 133:15–24.
  • Abedini M, Ghasemian B, Shirzadi A, Bui DT. 2019. A comparative study of support vector machine and logistic model tree classifiers for shallow landslide susceptibility modeling. Environ Earth Sci. 78(18):560..
  • Achour Y, Pourghasemi HR. 2020. How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geosci Front. 11(3):871–883.
  • Ahmed B. 2015. Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh. Landslides. 12(6):1077–1095.
  • Akgun A, Dag S, Bulut F. 2008. Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environ Geol. 54(6):1127–1143.
  • Arnone E, Francipane A, Noto LV, Scarbaci A, La Loggia G. 2014. Strategies investigation in using artificial neural network for landslide susceptibility mapping: application to a Sicilian catchment. J Hydroinformatics. 16(2):502–515. http://iwaponline.com/jh/article-pdf/16/2/502/387319/502.pdf.
  • Ayalew L, Yamagishi H. 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology. 65(1–2):15–31.
  • Azimi SR, Nikraz H, Yazdani-Chamzini A. 2018. Landslide risk assessment by using a new combination model based on a fuzzy inference system method. KSCE J Civ Eng. 22(11):4263–4271. www.springer.com/12205.
  • Baeza C, Lantada N, Amorim S. 2016. Statistical and spatial analysis of landslide susceptibility maps with different classification systems. Environ Earth Sci. 75:1–17. 10.1007/s12665-016-6124-1.
  • Basu T, Das A, Pal S. 2020. Application of geographically weighted principal component analysis and fuzzy approach for unsupervised landslide susceptibility mapping on Gish River Basin, India. Geocarto Int.1–24. 10.1080/10106049.2020.1778105.
  • Beven KJ, Kirkby MJ. 1979. A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull. 24(1):43–69. https://doi.org/https://www.tandfonline.com/action/journalInformation?journalCode=thsj20.
  • Bouaziz M, Eisold S, Guermazi E. 2017. Semiautomatic approach for land cover classification: a remote sensing study for arid climate in southeastern Tunisia. Euro-Mediterranean J Environ Integr. 2:1–7. https://doi.org/https://earthexplorer.usgs.gov.
  • Breiman L, Friedman J, Stone Rao CJ. 1984. Classification and regression trees. 1st ed. Chapman and Hall/CRC. https://doi.org/https://www.routledge.com/Classification-and-Regression-Trees/Breiman-Friedman-Stone-Olshen/p/book/9780412048418.
  • Bui QT, Nguyen QH, Nguyen XL, Pham VD, Nguyen HD, Pham VM. 2020. Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping. J Hydrol. 581:124379.
  • Chen W, Chen X, Peng J, Panahi M, Lee S. 2021. Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer. Geosci Front. 12(1):93–107.
  • Chen W, Hong H, Panahi M, Shahabi H, Wang Y, Shirzadi A, Pirasteh S, Alesheikh AA, Khosravi K, Panahi S, et al. 2019. Spatial prediction of landslide susceptibility using GIS-based data mining techniques of ANFIS with whale optimization algorithm (WOA) and grey wolf optimizer (GWO). Appl Sci. 9(18):3755. https://doi.org/https://www.mdpi.com/2076-3417/9/18/3755.
  • Choubin B, Darabi H, Rahmati O, Sajedi-Hosseini F, Kløve B. 2018. River suspended sediment modelling using the CART model: a comparative study of machine learning techniques. Sci Total Environ. 615:272–281. https://doi.org/https://pubmed.ncbi.nlm.nih.gov/28982076/.
  • Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A. 2019. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ. 651(Pt 2):2087–2096.
  • Di Napoli M, Carotenuto F, Cevasco A, Confuorto P, Di Martire D, Firpo M, Pepe G, Raso E, Calcaterra D. 2020. Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability. Landslides. 17(8):1897–1914.
  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen CW, Han Z, Pham BT. 2020. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides. 17(3):641–658. 10.1007/s10346-019-01286-5.
  • Eberhart R, Kennedy J. 1995. A new optimizer using particle swarm theory. In MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 39–43). IEEE.
  • Eshtay M, Faris H, Obeid N. 2018. Improving extreme learning machine by competitive swarm optimization and its application for medical diagnosis problems. Expert Syst Appl. 104:134–152.
  • Fakiola M, Mishra A, Rai M, Singh SP, O'Leary RA, Ball S, Francis RW, Firth MJ, Radford BT, Miller EN, et al. 2010. Classification and regression tree and spatial analyses reveal geographic heterogeneity in genome wide linkage study of Indian visceral Leishmaniasis. PLoS One. 5(12):e15807.
  • Gafar MG, Elhoseny M, Gunasekaran M. 2020. Modeling neutrosophic variables based on particle swarm optimization and information theory measures for forest fires. J Supercomput. 76(4):2339–2356..
  • Genuer R, Poggi JM, Tuleau-Malot C. 2010. Variable selection using random forests. Pattern Recognit Lett. 31(14):2225–2236.
  • Gilani SO, Sattarvand J, Hajihassani M, Abdullah SS. 2020. A stochastic particle swarm based model for long term production planning of open pit mines considering the geological uncertainty. Resour Policy. 68:101738.
  • Glade T, Nadim F. 2014. Early warning systems for natural hazards and risks. Nat Hazards. 70(3):1669–1671. 10.1007/s11069-013-1000-8.
  • Gokceoglu C, Nefeslioglu HA, Sezer E, Bozkir AS, Duman TY. 2010. Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey. Math Probl Eng. 44:147–161.
  • Granata F, Saroli M, De Marinis G, Gargano R. 2018. Machine learning models for spring discharge forecasting. Geofluids. 2018:1–13.
  • He Q, Xu Z, Li S, Li R, Zhang S, Wang N, Pham BT, Chen W. 2019. Novel entropy and rotation forest-based credal decision tree classifier for landslide susceptibility modeling. Entropy. 21(2):106. https://doi.org/http://www.mdpi.com/1099-4300/21/2/106.
  • Hemasinghe H, Rangali RS, Deshapriya NL, Samarakoon L. 2018. Landslide susceptibility mapping using logistic regression model (a case study in Badulla District, Sri Lanka). Procedia Eng. 212:1046–1053.
  • Hu X, Zhang H, Mei H, Xiao D, Li Y, Li M. 2020. Landslide susceptibility mapping using the stacking ensemble machine learning method in Lushui, Southwest China. Applied Sciences. 10(11):4016.
  • Huang C, Davis LS, Townshend JRG. 2002. An assessment of support vector machines for land cover classification. Int j Remote Sens. 23(4):725–749. https://doi.org/http://www.tandf.co.uk/journals.
  • Huang F, Yin K, Huang J, Gui L, Wang P. 2017. Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Eng Geol. 223:11–22.
  • Ilia I, Tsangaratos P. 2016. Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map. Landslides. 13(2):379–397. 10.1007/s10346-015-0576-3.
  • Jebur MN, Pradhan B, Tehrany MS. 2014. Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sens Environ. 152:150–165.
  • Kadavi PR, Lee CW, Lee S. 2018. Application of ensemble-based machine learning models to landslide susceptibility mapping. Remote Sensing. 10(8):1252.
  • Kavzoglu T, Colkesen I, Sahin EK. 2019. Machine learning techniques in landslide susceptibility mapping: a survey and a case study. Landslides: Theory Pract Model. 283–301.
  • Kayastha P, Dhital MR, De Smedt F. 2013. Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from the Tinau watershed, west Nepal. Comput Geosci. 52:398–408.
  • Khosravi K, Cooper JR, Daggupati P, Thai Pham B, Tien Bui D. 2020. Bedload transport rate prediction: Application of novel hybrid data mining techniques. J Hydrol. 585.
  • Kouli M, Loupasakis C, Soupios P, Rozos D, Vallianatos F. 2014. Landslide susceptibility mapping by comparing the WLC and WofE multi-criteria methods in the West Crete Island, Greece. Environ Earth Sci. 72(12):5197–5219.
  • Kumar R, Anbalagan R. 2016. Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region, Uttarakhand. J Geol Soc India. 87(3):271–286.
  • Lee S, Min K. 2001. Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol. 40(9):1095–1113. 10.1007/s002540100310.
  • Li D, Huang F, Yan L, Cao Z, Chen J, Ye Z. 2019. Landslide susceptibility prediction using particle-swarm-optimized multilayer perceptron: comparisons with multilayer-perceptron-only, BP neural network, and information value models. Appl Sci. 9(18):3664. https://doi.org/https://www.mdpi.com/2076-3417/9/18/3664.
  • Lin L, Lin Q, Wang Y. 2017. Landslide susceptibility mapping on a global scale using the method of logistic regression. Nat Hazards Earth Syst Sci. 17(8):1411–1424.
  • Mallick J, Alqadhi S, Talukdar S, AlSubih M, Ahmed M, Khan RA, Kahla NB, Abutayeh SM. 2021. Risk assessment of resources exposed to rainfall induced landslide with the development of GIS and RS based ensemble metaheuristic machine learning algorithms. Sustainability. 13(2):457.
  • Mehrabi M, Pradhan B, Moayedi H, Alamri A. 2020. Optimizing an adaptive neuro-fuzzy inference system for spatial prediction of landslide susceptibility using four state-of-the-art metaheuristic techniques. Sensors. 20(6):1723. https://doi.org/https://www.mdpi.com/1424-8220/20/6/1723.
  • Moayedi H, Nguyen H, Kok Foong L. 2021. Nonlinear evolutionary swarm intelligence of grasshopper optimization algorithm and gray wolf optimization for weight adjustment of neural network. Eng Comput. 37(2):1265–1275..
  • Mukherjee I, Singh UK. 2020. Delineation of groundwater potential zones in a drought-prone semi-arid region of east India using GIS and analytical hierarchical process techniques. Catena. 194:104681.
  • Nalepa J, Kawulok M. 2019. Selecting training sets for support vector machines: a review. Artif Intell Rev. 52(2):857–900..
  • Nhu V-H, Thi Ngo P-T, Pham TD, Dou J, Song X, Hoang N-D, Tran DA, Cao DP, Aydilek İB, Amiri M, et al. 2020. A new hybrid firefly–PSO optimized random subspace tree intelligence for torrential rainfall-induced flash flood susceptible mapping. Remote Sens. 12(17):2688. https://doi.org/https://www.mdpi.com/2072-4292/12/17/2688.
  • Niu W, Jing Feng Z, Kai Cheng C, Tian, Wu X. y. 2018. A parallel multi-objective particle swarm optimization for cascade hydropower reservoir operation in southwest China. Appl Soft Comput J. 70:562–575.
  • Pal S, Paul S. 2020. Assessing wetland habitat vulnerability in moribund Ganges delta using bivariate models and machine learning algorithms. Ecol Indic. 119:106866.
  • Pandey VK, Pourghasemi HR, Sharma MC. 2020. Landslide susceptibility mapping using maximum entropy and support vector machine models along the highway corridor, Garhwal Himalaya. Geocarto Int. 35(2):168–187. 10.1080/10106049.2018.1510038.
  • Pham BT, Prakash I. 2019. A novel hybrid model of Bagging-based Naïve Bayes trees for landslide susceptibility assessment. Bull Eng Geol Environ. 78(3):1911–1925..
  • Pham BT, Prakash I, Singh SK, Shirzadi A, Shahabi H, Tran TTT, Bui DT. 2019. Landslide susceptibility modeling using reduced error pruning trees and different ensemble techniques: hybrid machine learning approaches. Catena. 175:203–218.
  • Pham BT, Qi C, Ho LS, Nguyen-Thoi T, Al-Ansari N, Nguyen MD, Nguyen HD, Ly H-B, Le H, Van, Prakash I. 2020. A novel hybrid soft computing model using random forest and particle swarm optimization for estimation of undrained shear strength of soil. Sustainability. 12(6):2218. https://doi.org/https://www.mdpi.com/2071-1050/12/6/2218.
  • Pourghasemi HR, Razavi-Termeh SV, Kariminejad N, Hong H, Chen W. 2020. An assessment of metaheuristic approaches for flood assessment. J Hydrol. 582:124536.
  • Pradhan B, Lee S. 2010. Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Model Softw. 25(6):747–759.
  • Quinlan Basser JR. 1992. Learning with continuous classes. Proceedings of the 5th australian joint conference on artificial intelligence. Australia: World Scientific.
  • Raja NB, Çiçek I, Türkoğlu N, Aydin O, Kawasaki A. 2017. Landslide susceptibility mapping of the Sera River Basin using logistic regression model. Nat Hazards. 85(3):1323–1346.
  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F. 2018. A review of statistically-based landslide susceptibility models. Earth-Sci Rev. 180:60–91.
  • Roshanravan B, Aghajani H, Yousefi M, Kreuzer O. 2019. Particle swarm optimization algorithm for neuro-fuzzy prospectivity analysis using continuously weighted spatial exploration data. Nat Resour Res. 28(2):309–325..
  • Sahin EK. 2020. Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest. SN Appl Sci. 2:1–17..
  • Sahin EK, Colkesen I, Kavzoglu T. 2020. A comparative assessment of canonical correlation forest, random forest, rotation forest and logistic regression methods for landslide susceptibility mapping. Geocarto Int. 35(4):341–363. 10.1080/10106049.2018.1516248.
  • Sarkar S. 2018. Landslide risk assessment in parts of the Darjeeling Himalayas, India. In: Integrating disaster science and management: global case studies in mitigation and recovery. Netherlands: Elsevier Inc.; p. 99–108.
  • Shirzadi A, Soliamani K, Habibnejhad M, Kavian A, Chapi K, Shahabi H, Chen W, Khosravi K, Thai Pham B, Pradhan B, et al. 2018. Novel GIS based machine learning algorithms for shallow landslide susceptibility mapping. Sensors. 18(11):3777.
  • Sidle RC, Ochiai H. 2006. Landslides: processes, prediction, and land use. Washington, DC: American Geophysical Union. 10.1029/WM018.
  • Singha P, Das P, Talukdar S, Pal S. 2020. Modeling livelihood vulnerability in erosion and flooding induced river island in Ganges riparian corridor, India. Ecol Indic. 119:106825.
  • Stumpf A, Kerle N. 2011. Object-oriented mapping of landslides using Random Forests. Remote Sens Environ. 115(10):2564–2577.
  • Sun D, Wen H, Wang D, Xu J. 2020. A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm. Geomorphology. 362:107201.
  • Talukdar S, Ghose B, Shahfahad Salam R, Mahato S, Pham QB, Linh NTT, Costache R, Avand M. 2020. Flood susceptibility modeling in Teesta River basin, Bangladesh using novel ensembles of bagging algorithms. Stoch Environ Res Risk Assess. 34:2277–2300.
  • Talukdar S, Pal S, Singha P. 2021. Proposing artificial intelligence based livelihood vulnerability index in river islands. J Clean Prod. 284.
  • Tang X, Li J, Liu M, Liu W, Hong H. 2020. Flood susceptibility assessment based on a novel random Naïve Bayes method: a comparison between different factor discretization methods. Catena. 190:104536.
  • Taormina R, Chau KW. 2015. Data-driven input variable selection for rainfall–runoff modeling using binary-coded particle swarm optimization and Extreme Learning Machines. J Hydrol. 529:1617–1632.
  • Tien Bui D, Shahabi H, Shirzadi A, Chapi K, Alizadeh M, Chen W, Mohammadi A, Ahmad B, Panahi M, Hong H, et al. 2018. Landslide detection and susceptibility mapping by airsar data using support vector machine and index of entropy models in Cameron Highlands, Malaysia. Remote Sens. 10(10):1527. https://doi.org/http://www.mdpi.com/2072-4292/10/10/1527.
  • Towfiqul Islam ARM, Talukdar S, Mahato S, Kundu S, Eibek KU, Pham QB, Kuriqi A, Linh NTT. 2021. Flood susceptibility modelling using advanced ensemble machine learning models. Geosci Front. 12(3):101075.
  • Tsangaratos P, Ilia I. 2016. Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size. Catena. 145:164–179.
  • Tu JV. 1996. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol. 49(11):1225–1231.
  • Van Westen CJ, Van Asch TW, Soeters R. 2006. Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ. 65(2):167–184.
  • Wang Y, Hong H, Chen W, Li S, Panahi M, Khosravi K, Shirzadi A, Shahabi H, Panahi S, Costache R. 2019. Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. J Environ Manage. 247:712–729.
  • Wang LJ, Sawada K, Moriguchi S. 2013. Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy. Comput Geosci. 57:81–92.
  • Wu Y, Ke Y, Chen Z, Liang S, Zhao H, Hong H. 2020a. Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping. Catena. 187:104396.
  • Wu B, Qiu W, Jia J, Liu N. 2020b. Landslide susceptibility modeling using bagging-based positive-unlabeled learning. IEEE Geosci Remote Sens Lett. 18(5):766–770.
  • Xi W, Li G, Moayedi H, Nguyen H. 2019. A particle-based optimization of artificial neural network for earthquake-induced landslide assessment in Ludian county, China. Geomatics Nat Hazards Risk. 10(1):1750–1771. 10.1080/19475705.2019.1615005.
  • Yalcin A. 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena. 72(1):1–12.
  • Yasin Q, Sohail GM, Ding Y, Ismail A, Du Q. 2020. Estimation of petrophysical parameters from seismic inversion by combining particle swarm optimization and multilayer linear calculator. Nat Resour Res. 29(5):3291–3317.
  • Yilmaz I. 2009. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey). Comp Geosci. 35(6):1125–1138.
  • Yu C, Chen J. 2020. Landslide susceptibility mapping using the slope unit for Southeastern Helong City, Jilin Province, China: a comparison of ANN and SVM. Symmetry (Basel). 12(6):1047. https://doi.org/https://www.mdpi.com/2073-8994/12/6/1047.
  • Zare M, Pourghasemi HR, Vafakhah M, Pradhan B. 2013. Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arab J Geosci. 6(8):2873–2888. 10.1007/s12517-012-0610-x.
  • Zhang HG, Liang ZH, Liu HJ, Wang R, Liu YA. 2020. Ensemble framework by using nature inspired algorithms for the early-stage forest fire rescue – a case study of dynamic optimization problems. Eng Appl Artif Intell. 90:103517.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.