389
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Visibility analysis for the occlusion detection and characterisation in street point clouds acquired with Mobile Laser Scanning

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 10152-10169 | Received 31 Aug 2021, Accepted 17 Jan 2022, Published online: 08 Feb 2022

References

  • Balado J, Arias P, Lorenzo H, Meijide-Rodríguez A. 2021. Disturbance analysis in the classification of objects obtained from urban LiDAR point clouds with convolutional neural networks. Remote Sens. 13(11):2135.
  • Balado J, Díaz-Vilariño L, Arias P, González-Jorge H. 2018. Automatic classification of urban ground elements from mobile laser scanning data. Autom Constr. 86:226–239.
  • Balado J, Díaz-Vilariño L, Arias P, Lorenzo H. 2019. Point clouds for direct pedestrian pathfinding in urban environments. ISPRS J Photogramm Remote Sens. 148:184–196.
  • Balado J, Díaz-Vilariño L, Arias P, Soilán M. 2017. Automatic building accessibility diagnosis from point clouds. Autom Constr. 82:103–111.
  • Balado J, González E, Verbree E, Díaz-Vilariño L, Lorenzo H, Balado J. 2020. Automatic detection and characterization of ground occlusions in urban point clouds from Mobile Laser Scanning data. ISPRS Ann Photogramm Remote Sens Spat Inf Sci. 6.
  • Bauwens S, Bartholomeus H, Calders K, Lejeune P. 2016. Forest inventory with terrestrial LiDAR: a comparison of static and hand-held mobile laser scanning. Forests. 7(6):127.
  • Boulch A, Saux BL, Audebert N. 2017. Unstructured point cloud semantic labeling using deep segmentation networks. Proceedings of the Eurographics Workshop on 3D Object Retrieval [Internet]. Goslar Germany, Germany: Eurographics Association. p. 17–24..
  • Buyssens P, Daisy M, Tschumperle D, Lezoray O. 2015. Exemplar-based inpainting: technical review and new heuristics for better geometric reconstructions. IEEE Trans Image Process. 24:1809–1824.
  • Charles RQ, Su H, Kaichun M, Guibas LJ. 2017. PointNet: deep learning on point sets for 3D classification and segmentation. 2017 IEEE Conference on Computer Vision and Pattern Recognition. p. 77–85.
  • Che E, Jung J, Olsen MJ. 2019. Object recognition, segmentation, and classification of mobile laser scanning point clouds: a state of the art review. Sensors. 19(4):810. https://www.mdpi.com/1424-8220/19/4/810.
  • Chen C, Yang B. 2016. Dynamic occlusion detection and inpainting of in situ captured terrestrial laser scanning point clouds sequence. ISPRS J Photogramm Remote Sens. 119:90–107. http://www.sciencedirect.com/science/article/pii/S0924271616300922.
  • Chen J, Yi JS, Kahoush M, Cho ES, Cho YK. 2020. Point cloud scene completion of obstructed building facades with generative adversarial inpainting. Sensors. 20(18):5029.
  • De Blasiis MR, Di Benedetto A, Fiani M. 2020. Mobile laser scanning data for the evaluation of pavement surface distress. Remote Sens. 12(6):942. https://www.mdpi.com/2072-4292/12/6/942.
  • Doria D, Radke RJ. 2012. Filling large holes in LiDAR data by inpainting depth gradients. 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Work. p. 65–72.
  • Han X, Dong Z, Yang B. 2021. A point-based deep learning network for semantic segmentation of MLS point clouds. ISPRS J Photogramm Remote Sens. 175:199–214. https://www.sciencedirect.com/science/article/pii/S0924271621000642.
  • Huang P, Cheng M, Chen Y, Luo H, Wang C, Li J. 2017. Traffic sign occlusion detection using mobile laser scanning point clouds. IEEE Trans Intell Transport Syst. 18(9):2364–2376.
  • Huang Z, Yu Y, Xu J, Ni F, Le X. 2020. PF-Net: point fractal network for 3D point cloud completion. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
  • Huang T, Zou H, Cui J, Yang X, Wang M, Zhao X, Zhang J, Yuan Y, Xu Y, Liu Y. 2021. RFNet: recurrent forward network for dense point cloud completion. Proceedings of the IEEE/CVF International Conference on Computer Vision. p. 12508–12517.
  • Kroemer O, Amor HB, Ewerton M, Peters J. 2012. Point cloud completion using extrusions. 2012 12th IEEE-RAS International Conference on Humanoid Robot (Humanoids 2012). p. 680–685.
  • Ku T, Veltkamp RC, Boom B, Duque-Arias D, Velasco-Forero S, Deschaud J-E, Goulette F, Marcotegui B, Ortega S, Trujillo A, et al. 2020. SHREC 2020: 3D point cloud semantic segmentation for street scenes. Comput Graph. 93:13–24. http://www.sciencedirect.com/science/article/pii/S0097849320301400.
  • Kukko A, Kaartinen H, Hyyppä J, Chen Y. 2012. Multiplatform mobile laser scanning: usability and performance. Sensors. 12(9):11712–11733.
  • Kunyuan C, Ming C, Menglan Z, Xinqu C, Yifei C, Jonathan L, Hongshan N. 2015. Automated object extraction from MLS data: a survey. 2015 10th International Conference on Intelligent Systems and Knowledge Engineering. p. 331–334.
  • Landrieu L, Simonovsky M. 2018. Large-scale point cloud semantic segmentation with superpoint graphs. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. p. 4558–4567.
  • Lawin FJ, Danelljan M, Tosteberg P, Bhat G, Khan FS, Felsberg M. 2017. Deep projective 3D semantic segmentation. In: Felsberg M, Heyden A, Krüger N, editors. Computer analysis of images and patterns. Cham: Springer International Publishing. p. 95–107.
  • Li F, Lehtomäki M, Oude Elberink S, Vosselman G, Kukko A, Puttonen E, Chen Y, Hyyppä J. 2019. Semantic segmentation of road furniture in mobile laser scanning data. ISPRS J Photogramm Remote Sens. 154:98–113. https://www.sciencedirect.com/science/article/pii/S092427161930142X.
  • Li Z, Liqiang Z, Mathiopoulos PT, Liu F, Liang Z, Li S, Liu H. 2017. A hierarchical methodology for urban facade parsing from TLS point clouds. ISPRS J Photogramm Remote Sens. 123:75–93. https://www.sciencedirect.com/science/article/pii/S0924271616305408.
  • Lian Y, Feng T, Zhou J. 2019. A dense Pointnet++ architecture for 3D point cloud semantic segmentation. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. p. 5061–5064.
  • Luo H, Chen C, Fang L, Khoshelham K, Shen G. 2020a. MS-RRFSegNet: multiscale regional relation feature segmentation network for semantic segmentation of urban scene point clouds. IEEE Trans Geosci Remote Sens. 58(12):8301–8315.
  • Luo H, Khoshelham K, Fang L, Chen C. 2020b. Unsupervised scene adaptation for semantic segmentation of urban mobile laser scanning point clouds. ISPRS J Photogramm Remote Sens. 169:253–267. https://www.sciencedirect.com/science/article/pii/S0924271620302744.
  • Mohd Noor N, Ibrahim I, Abdullah A, Abdullah AA. 2020. Information fusion for cultural heritage three-dimensional modeling of Malay cities. ISPRS Int J Geo-Information. 9(3).
  • Qin R, Gruen A. 2014. 3D change detection at street level using mobile laser scanning point clouds and terrestrial images. ISPRS J Photogramm Remote Sens. 90:23–35. https://www.sciencedirect.com/science/article/pii/S0924271614000100.
  • Rastiveis H, Shams A, Sarasua WA, Li J. 2020. Automated extraction of lane markings from mobile LiDAR point clouds based on fuzzy inference. ISPRS J Photogramm Remote Sens. 160:149–166. https://www.sciencedirect.com/science/article/pii/S0924271619302977.
  • Salamanca S, Merchán P, Hernández E, Adan A, Cerrada C. 2008. Filling holes in 3D meshes using image restoration algorithms. 4th International Symposium on 3D Data Processing, Visualization and Transmission, 3DPVT 2008.
  • Serna A, Marcotegui B. 2013. Urban accessibility diagnosis from mobile laser scanning data. ISPRS J Photogramm Remote Sens. 84:23–32.
  • Serna A, Marcotegui B. 2014. Detection, segmentation and classification of 3D urban objects using mathematical morphology and supervised learning. ISPRS J Photogramm Remote Sens. 93:243–255.
  • Soilán M, Riveiro B, Martínez-Sánchez J, Arias P. 2017. Segmentation and classification of road markings using MLS data. ISPRS J Photogramm Remote Sens. 123:94–103. http://linkinghub.elsevier.com/retrieve/pii/S0924271616303173.
  • Soilán M, Riveiro B, Sánchez-Rodríguez A, Arias P. 2018. Safety assessment on pedestrian crossing environments using MLS data. Accid Anal Prev. 111:328–337. http://www.sciencedirect.com/science/article/pii/S0001457517304475.
  • Sun Z, Xu Y, Hoegner L, Stilla U. 2018. Classification of MLS point clouds in urban scenes using detrended geometric features from supervoxel-based local contexts. ISPRS Ann Photogramm Remote Sens Spat Inf Sci. IV-2:271–278. https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-2/271/2018/.
  • Tan W, Qin N, Ma L, Li Y, Du J, Cai G, Yang K, Li J. 2020. Toronto-3D: a large-scale mobile LiDAR dataset for semantic segmentation of urban roadways. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Work [Internet]. http://dx.doi.org/10.1109/CVPRW50498.2020.00109.
  • Tchapmi L, Choy C, Armeni I, Gwak J, Savarese S. 2017. SEGCloud: semantic segmentation of 3D point clouds. 2017 International Conference on 3D Vision. p. 537–547.
  • Vallet B, Brédif M, Serna A, Marcotegui B, Paparoditis N. 2015. TerraMobilita/iQmulus urban point cloud analysis benchmark. Comput Graph. 49:126–133. http://dx.doi.org/10.1016/j.cag.2015.03.004.
  • Wang X, Jr, Marcelo HA, Lee GH. 2020. Cascaded refinement network for point cloud completion. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
  • Wang Y, Chen Q, Zhu Q, Liu L, Li C, Zheng D. 2019. A survey of mobile laser scanning applications and key techniques over urban areas. Remote Sens. 11(13):1543.
  • Wen X, Xiang P, Han Z, Cao Y-P, Wan P, Zheng W, Liu Y-S. 2021. PMP-Net: point cloud completion by learning multi-step point moving paths. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. p. 7443–7452.
  • Xia S, Wang R. 2019. Façade separation in ground-based LiDAR point clouds based on edges and Windows. IEEE J Sel Top Appl Earth Observ Remote Sens. 12(3):1041–1052.
  • Xiao W, Vallet B, Brédif M, Paparoditis N. 2015. Street environment change detection from mobile laser scanning point clouds. ISPRS J Photogramm Remote Sens. 107:38–49. http://www.sciencedirect.com/science/article/pii/S0924271615001215.
  • Xie C, Wang C, Zhang B, Yang H, Chen D, Wen F. 2021. Style-based point generator with adversarial rendering for point cloud completion. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. p. 4619–4628.
  • Yang B, Dong Z, Zhao G, Dai W. 2015. Hierarchical extraction of urban objects from mobile laser scanning data. ISPRS J Photogramm Remote Sens. 99:45–57. http://www.sciencedirect.com/science/article/pii/S092427161400255X.
  • Ye X, Li J, Huang H, Du L, Zhang X. 2018. 3D recurrent neural networks with context fusion for point cloud semantic segmentation. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer vision – ECCV 2018. Cham: Springer International Publishing. p. 415–430.
  • Yu X, Rao Y, Wang Z, Liu Z, Lu J, Zhou J. 2021. PoinTr: diverse point cloud completion with geometry-aware transformers. Proceedings of the IEEE/CVF International Conference on Computer Vision. p. 12498–12507.
  • Yuan W, Khot T, Held D, Mertz C, Hebert M. 2018. PCN: point completion network. 2018 International Conference on 3D Vision. p. 728–737.
  • Zhang X, Feng Y, Li S, Zou C, Wan H, Zhao X, Guo Y, Gao Y. 2021. View-guided point cloud completion. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. p. 15890–15899.
  • Zhong M, Sui L, Wang Z, Hu D. 2020a. Pavement crack detection from mobile laser scanning point clouds using a time grid. Sensors. 20(15):4198.
  • Zhong M, Sui L, Wang Z, Yang X, Zhang C, Chen N. 2020b. Recovering missing trajectory data for mobile laser scanning systems. Remote Sens. 12(6):899.
  • Zhu J, Gehrung J, Huang R, Borgmann B, Sun Z, Hoegner L, Hebel M, Xu Y, Stilla U. 2020. TUM-MLS-2016: an annotated mobile LiDAR dataset of the TUM city campus for semantic point cloud interpretation in urban areas. Remote Sens. 12(11):1875.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.