637
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Tree's detection & health's assessment from ultra-high resolution UAV imagery and deep learning

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , , & show all
Pages 10459-10479 | Received 06 Jul 2021, Accepted 27 Jan 2022, Published online: 12 Mar 2022

References

  • Achille C, Adami A, Chiarini S, Cremonesi S, Fassi F, Fregonese L, Taffurelli L. 2015. UAV-based photogrammetry and integrated technologies for architectural applications—Methodological strategies for the after-quake survey of vertical structures in Mantua (Italy). Sensors. 15(7):15520–15539.
  • Anand A, Pandey PC, Petropoulos GP, Pavlides A, Srivastava PK, Sharma JK, Malhi RKM. 2020. Use of hyperion for mangrove forest carbon stock assessment in Bhitarkanika Forest Reserve: A contribution towards blue carbon initiative. Remote Sens. 12(4):597.
  • Bannari A, Morin D, Bonn F, Huete AR. 1995. A review of vegetation indices. Remote Sens Rev. 13(1–2):95–120.
  • Bridges JM, Petropoulos GP, Clerici N. 2019. Immediate changes in organic matter and plant available nutrients of haplic luvisol soils following different experimental burning intensities in Damak Forest, Hungary. Forests. 10(5):453.
  • Cârlan I, Haase D, Große-Stoltenberg A, Sandric I. 2020. Mapping heat and traffic stress of urban park vegetation based on satellite imagery - A comparison of Bucharest, Romania and Leipzig, Germany. Urban Ecosyst. 23(2):363–377.
  • ESRI. 2021. “ArcGIS Drone2Map | Turn Your Drone into an Enterprise GIS Productivity Tool.” [accessed 2021 October 23]. https://www.esri.com/en-us/arcgis/products/arcgis-drone2map/overview.
  • ESRI. 2022. “ArcGIS API for Python.” https://developers.arcgis.com/python.
  • Fragou S, Kalogeropoulos K, Stathopoulos N, Louka P, Srivastava PK, Karpouzas S, P. Kalivas D, P. Petropoulos G. 2020. Quantifying land cover changes in a Mediterranean environment using landsat TM and support vector machines. Forests. 11(7):750.
  • Franklin SE. 2018. Pixel- and object-based multispectral classification of forest tree species from small unmanned aerial vehicles. J Unmanned Veh Sys. 6(4):195–211.
  • Franklin SE, Ahmed OS. 2018. Deciduous tree species classification using object-based analysis and machine learning with unmanned aerial vehicle multispectral data. Int J Remote Sens. 39(15–16):5236–5245.
  • G. Braga JR, Peripato V, Dalagnol R, Ferreira MP, Tarabalka Y, Aragão LEOC, de Campos Velho HF, Shiguemori EH, Wagner FH. 2020. Tree crown delineation algorithm based on a convolutional neural network. Remote Sens. 12(8):1288.
  • Gallardo-Salazar JL, Pompa-García M. 2020. Detecting individual tree attributes and multispectral indices using unmanned aerial vehicles: Applications in a pine clonal orchard. Remote Sensing. 12(24):4144.
  • Gitelson AA, Peng Y, Huemmrich KF. 2014. Relationship between fraction of radiation absorbed by photosynthesizing maize and soybean canopies and NDVI from remotely sensed data taken at close range and from MODIS 250m resolution data. Remote Sens Environ. 147:108–120.
  • Hao Z, Lin L, Post CJ, Mikhailova EA, Li M, Chen Y, Yu K, Liu J. 2021. Automated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (Mask R-CNN). ISPRS J Photogramm Remote Sens. 178:112–123.
  • He K, Gkioxari G, Dollár P, Girshick R. 2017. “Mask R-CNN,” March. http://arxiv.org/abs/1703.06870.
  • He K, Zhang X, Ren S, Sun J. 2015. “Deep Residual Learning for Image Recognition,” December. http://arxiv.org/abs/1512.03385.
  • Howard J, Sylvain G. 2020. Fastai: a layered API for deep learning. Information. 11(2):108. https://doi.org/10.3390/info11020108.
  • Iglhaut J, Cabo C, Puliti S, Piermattei L, O’Connor J, Rosette J. 2019. Structure from motion photogrammetry in forestry: A review. Curr Forestry Rep. 5(3):155–168.
  • Iost Filho FH, Heldens WB, Kong Z, de Lange ES. 2020. Drones: Innovative technology for use in precision pest management. J Econ Entomol. 113(1):1–25.
  • Jogin M, Mohana MS, Madhulika GD, Divya RK, Meghana S. Apoorva 2018. Feature extraction using convolution neural networks (CNN) and deep learning. In 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 2319–23. IEEE.
  • Kamal M, Phinn S, Johansen K. 2015. Object-based approach for multi-scale mangrove composition mapping using multi-resolution image datasets. Remote Sens. 7(4):4753–4783.
  • Kaiming H, Gkioxari G, Dollár P, Girshick R. 2017. Mask R-CNN. http://arxiv.org/abs/1703.06870.
  • Karlson M, Reese H, Ostwald M. 2014. Tree crown mapping in managed woodlands (Parklands) of semi-arid West Africa using worldview-2 imagery and geographic object based image analysis. Sensors. 14(12):22643–22669.
  • Kattenborn T, Maack J, Faßnacht F, Enßle F, Ermert J, Koch B. 2015. Mapping forest biomass from space – fusion of hyperspectral EO1-hyperion data and tandem-X and worldview-2 canopy height models. Int J Appl Earth Obs Geoinf. 35:359–367.
  • Kaufman YJ, Tanre D. 1992. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans Geosci Remote Sensing. 30(2):261–270.
  • Kim W-S, Lee D-H, Kim Y-J, Kim T, Hwang R-Y, Lee H-J. 2020. Path detection for autonomous traveling in orchards using patch-based CNN. Comput Electron Agric. 175:105620.
  • Kumar A, Singh A, Kumar S, Kanga S. 2018. Estimating the change in forest cover density and predicting NDVI for West Singhbhum using linear regression. Essence Int J Env Rehab Conser. 9(1):193–203.
  • Kumar Ranjan A, Anand A, Vallisree S, Kumar Singh R. 2016. LU/LC change detection and forest degradation analysis in Dalma Wildlife sanctuary using 3S technology: A case study in Jamshedpur-India. AIMS Geosci. 2(4):273–285.
  • Liao W, Van Coillie F, Gao L, Li L, Zhang B, Chanussot J. 2018. Deep learning for fusion of APEX hyperspectral and full-waveform LiDAR remote sensing data for tree species mapping. IEEE Access. 6:68716–68729.
  • Lorenzen B, Madsen J. 1986. Feeding by geese on the Filso Farmland, Denmark, and the effect of grazing on yield structure of Spring Barley. Ecography. 9(4):305–311.
  • Lumnitz S, Devisscher T, Mayaud JR, Radic V, Coops NC, Griess VC. 2021. Mapping trees along urban street networks with deep learning and street-level imagery. ISPRS J Photogramm Remote Sens. 175:144–157.
  • Malhi RKM, Anand A, Srivastava PK, Sandhya Kiran G, Petropoulos GP, Chalkias C. 2020. An integrated spatiotemporal pattern analysis model to assess and predict the degradation of protected forest areas. IJGI. 9(9):530.
  • Naidoo L, Cho MA, Mathieu R, Asner G. 2012. Classification of Savanna Tree Species, in the greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a random forest data mining environment. ISPRS J Photogramm Remote Sens. 69:167–179.
  • Ocer NE, Kaplan G, Erdem F, Matci DK, Avdan U. 2020. Tree extraction from multi-scale UAV images using Mask R-CNN with FPN. Remote Sens Lett. 11(9):847–856.
  • Onojeghuo AO, Blackburn GA. 2013. Characterising reedbeds using LiDAR Data: Potential and limitations. IEEE J Sel Top Appl Earth Observations Remote Sensing. 6(2):935–941.
  • Pandey PC, Anand A, Srivastava PK. 2019. Spatial distribution of mangrove forest species and biomass assessment using field inventory and earth observation hyperspectral data. Biodivers Conserv. 28(8–9):2143–2162.
  • Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, et al. 2019. PyTorch: An imperative style, high-performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer A, Alché-Buc F, Fox E, Garnett R, editors. Advances in neural information processing systems 32. Curran Associates, Inc; p. 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.
  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, et al. 2012. “Scikit-Learn: Machine Learning in Python,” January. http://arxiv.org/abs/1201.0490.
  • Perry CR, Lautenschlager LF. 1984. Functional equivalence of spectral vegetation indices. Remote Sens Environ. 14(1–3):169–182.
  • Petropoulos GPGP, Sandric I, Hristopulos D, Carlson TN, Carlson TN, Nahum Carlson T. 2020. Evaporative fluxes and surface soil moisture retrievals in a mediterranean setting from sentinel-3 and the ‘simplified triangle”. Remote Sens. 12(19):3192.
  • PIX4D SA. XXXX. Company. “PIX4Dcapture.” [accessed 2021 October 23]. https://www.pix4d.com/product/pix4dcapture.
  • Pleșoianu A-I, Stupariu M-S, Șandric I, Pătru-Stupariu I, Drăguț L. 2020. Individual tree-crown detection and species classification in very high-resolution remote sensing imagery using a deep learning ensemble model. Remote Sens. 12(15):2426.
  • Safonova A, Guirado E, Maglinets Y, Alcaraz-Segura D, Tabik S. 2021. Olive tree biovolume from UAV multi-resolution image segmentation with Mask R-CNN. Sensors. 21 (5):1617.
  • SPH Engineering (Company). XXXX. “Ground Station Software | UgCS PC Mission Planning.” [accessed 2021 October 23]. https://www.ugcs.com/.
  • Srivastava PK, Malhi RKM, Pandey PC, Anand A, Singh P, Pandey MK, Gupta A. 2020. Revisiting hyperspectral remote sensing: Origin, processing, applications and way forward. In Hyperspectral remote sensing. Elsevier; p. 3–21.
  • Srivastava PK, Petropoulos GP, Prasad R, Triantakonstantis D. 2021. Random forests with bagging and genetic algorithms coupled with least trimmed squares regression for soil moisture deficit using SMOS satellite soil moisture. ISPRS International Journal of Geo-Information, MDPI. https://www.mdpi.com/2220-9964/10/8/507
  • Thenkabail PS, Smith RB, De Pauw E. 2000. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens Environ. 71(2):158–182.
  • Whiteside T, Ahmad W. 2005. “A comparison of object-oriented and pixel-based classification methods for mapping land cover in Northern Australia.” Proceedings of the SSC 2005, spatial intelligence, innovation and praxis: the national biennial conference of the Spatial Sciences Institute, September 2005.
  • Widjaja Putra BT, Soni P. 2017. Evaluating NIR-Red and NIR-red edge external filters with digital cameras for assessing vegetation indices under different illumination. Infrared Phys Technol. 81:148–156.
  • Wu J, Yang G, Yang H, Zhu Y, Li Z, Lei L, Zhao C. 2020. Extracting apple tree crown information from remote imagery using deep learning. Comput Electron Agric. 174:105504.
  • Wu M, Yue H, Wang J, Huang Y, Liu M, Jiang Y, Ke C, Zeng C. 2020. Object detection based on RGC mask R‐CNN. IET Image Proc. 14(8):1502–1508.
  • Yeom J, Jung J, Chang A, Ashapure A, Maeda M, Maeda A, Landivar J. 2019. Comparison of vegetation indices derived from UAV data for differentiation of tillage effects in agriculture. Remote Sens. 11(13):1548.
  • Zhang C, Valente J, Kooistra L, Guo L, Wang W. 2021. Orchard management with small unmanned aerial vehicles: A survey of sensing and analysis approaches. Precision Agric. 22(6):2007–2052.
  • Zhen Z, Quackenbush L, Zhang L. 2016. Trends in automatic individual tree crown detection and delineation—Evolution of LiDAR data. Remote Sens. 8(4):333.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.