3,773
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Sustainable flood risk assessment using deep learning-based algorithms with a blockchain technology

, ORCID Icon, ORCID Icon, , , , , ORCID Icon, ORCID Icon, , , & show all
Pages 1-29 | Received 02 Jun 2022, Accepted 30 Jul 2022, Published online: 23 Aug 2022

References

  • Achour Y, Saidani Z, Touati R, Pham QB, Pal SC, Mustafa F, Balik Sanli F. 2021. Assessing landslide susceptibility using a machine learning-based approach to achieving land degradation neutrality. Environ Earth Sci. 80(17):1–20.
  • Adnan MSG, Dewan A, Zannat KE, Abdullah AYM. 2019. The use of watershed geomorphic data in flash flood susceptibility zoning: a case study of the Karnaphuli and Sangu River basins of Bangladesh. Nat Hazards. 99(1):425–448.
  • Ahmed N, Hoque MAA, Arabameri A, Chandra Pal S, Chakrabortty R, Jui J. 2021. Flood susceptibility mapping in Brahmaputra floodplain of Bangladesh using deep boost, deep learning neural network, and artificial neural network. Geocarto Int. 2021:1–19.
  • Akhter S, Eibek KU, Islam S, Islam A, Shen S, Chu R. 2019. Predicting spatiotemporal changes of channel morphology in the reach of Teesta River, Bangladesh using GIS and ARIMA modeling. Quat. Int. 513:80–94.
  • Arabameri A, Pradhan B, Pourghasemi HR, Rezaei K, Kerle N. 2018. Spatial modeling of gully erosion using GIS and R programing: A comparison among three data mining algorithms. Appl Sci. 8(8):1369.
  • Arabameri A, Saha S, Chen W, Roy J, Pradhan B, Bui DT. 2020. Flash flood susceptibility modelling using functional tree and hybrid ensemble techniques. J Hydrol. 587:125007.
  • Arora A, Arabameri A, Pandey M, Siddiqui MA, Shukla UK, Bui DT, Mishra VN, Bhardwaj A. 2021. Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain, India. Sci Total Environ. 750:141565.
  • Baig MA, Xiong D, Rahman M. 2022. How do multiple kernel functions in machine learning algorithms improve precision in flood probability mapping?. Natural Hazards. 2022:1–20.
  • BBS. 2011. Population and housing census, Bangladesh Bureau of Statistics (BBS). Dhaka: Ministry of Planning, Government of the People’s Republic of Bangladesh.
  • Bonafilia D, Tellman B, Anderson T, Issenberg E. 2020. Sen1Floods11: a georeferenced dataset to train and test deep learning flood algorithms for Sentinel-1. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (p. 210–211).
  • Brammer H. 2017. Bangladesh’s diverse and complex physical geography: implications for agricultural development. Int J Environ Stud. 74(1):1–27.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32.
  • Brouwer R, van Ek R. 2004. Integrated ecological, economic and social impact assessment of alternative flood control policies in the Netherlands. Ecol Econ. 50(1–2):1–21.
  • Bui DT, Tsangaratos P, Ngo PTT, Pham TD, Pham BT. 2019. Flash flood susceptibility modeling using an optimized fuzzy rule-based feature selection technique and tree-based ensemble methods. Sci Total Environ. 668:1038–1054.
  • Bui DT, Tsangaratos P, Nguyen VT, Van Liem N, Trinh PT. 2020. Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. Catena. 188:104426.
  • Chen H, Ito Y, Sawamukai M, Tokunaga T. 2015. Flood hazard assessment in the Kujukuri Plain of Chiba Prefecture, Japan, based on GIS and multicriteria decision analysis. Nat Hazards. 78(1):105–120.
  • Chen T, Guestrin C. 2016. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining (p. 785–794). [Mismatch
  • Chen X, Chen G, Ge L, Huang B, Cao C. 2021. Global oceanic Eddy identification: A deep learning method from argo profiles and altimetry data. Front Mar Sci. 8:646926.
  • Cheval S, Mihai Adamescu C, Georgiadis T, Herrnegger M, Piticar A, Legates DR. 2020. Observed and potential impacts of the COVID-19 pandemic on the environment. IJERPH. 17(11):4140.
  • Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A. 2019. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ. 651(Pt 2):2087–2096.
  • Chowdhuri I, Pal SC, Chakrabortty R. 2020. Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India. Adv Space Res. 65(5):1466–1489.
  • Costache R, Arabameri A, Costache I, Crăciun A, Md Towfiqul Islam AR, Abba SI, Sahana M, Pham BT. 2022b. Flood susceptibility evaluation through deep learning optimizer ensembles and GIS techniques. J Environ Manage. 316:115316.
  • Costache R, Tin TT, Arabameri A, Crăciun A, Costache I, Islam ARMT, Sahana M, Pham BT. 2022a. Stacking state-of-the-art ensemble for flash-flood potential assessment. Geocarto Int. 2022:1–27.
  • Costache R, Trung Tin T, Arabameri A, Crăciun A, Ajin RS, Costache I, Reza Md. Towfiqul Islam A, Abba SI, Sahana M, Avand M, et al. 2022c. Flash-flood hazard using deep learning based on H2O R package and fuzzy-multicriteria decision-making analysis. J Hydrology. 609:127747.
  • Costache R. 2019. Flood susceptibility assessment by using bivariate statistics and machine learning models-a useful tool for flood risk management. Water Resour Manage. 33(9):3239–3256.
  • Das S. 2020. Flood susceptibility mapping of the Western Ghat coastal belt using multi-source geospatial data and analytical hierarchy process (AHP). Remote Sens Appl: Soc Environ. 20:100379.
  • Dewan A, Corner R, Saleem A, Rahman MM, Haider MR, Rahman MM, Sarker MH. 2017. Assessing channel changes of the Ganges-Padma River system in Bangladesh using Landsat and hydrological data. Geomorphology. 276:257–279.
  • Dogo EM, Salami AF, Nwulu NI, Aigbavboa CO. 2019. Blockchain and internet of things-based technologies for intelligent water management system. In: Artificial intelligence in IoT. Cham: Springer; p. 129–150.
  • Dottori F, Salamon P, Bianchi A, Alfieri L, Hirpa FA, Feyen L. 2016. Development and evaluation of a framework for global flood hazard mapping. Adv Water Resour. 94:87–102.
  • Engin Z, Treleaven P. 2019. Algorithmic government: Automating public services and supporting civil servants in using data science technologies. Computer J. 62(3):448–460.
  • Esposito C, Ficco M, Gupta BB. 2021. Blockchain-based authentication and authorization for smart city applications. Inf Process Manag. 58(2):102468.
  • Fan J, Wang X, Wu L, Zhou H, Zhang F, Yu X, Lu X, Xiang Y. 2018. Comparison of support vector machine and extreme gradient boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: a case study in China. Energy Convers Manag. 164:102–111.
  • Fang Y, Yin J, Wu B. 2016. Flooding risk assessment of coastal tourist attractions affected by sea-level rise and storm surge: a case study in Zhejiang Province. Nat Hazards. 84(1):611–624.
  • Fernandez P, Mourato S, Moreira M. 2016. Social vulnerability assessment of flood risk using GIS-based multicriteria decision analysis. A case study of Vila Nova de Gaia (Portugal). Geomat Nat Haz Risk. 7(4):1367–1389.
  • Gain AK, Mojtahed V, Biscaro C, Balbi S, Giupponi C. 2015b. An integrated approach of flood risk assessment in the eastern part of Dhaka City Nat. Nat Hazards. 79(3):1499–1530.
  • Gazi MY, Islam MA, Hossain S. 2019. Flood-hazard mapping in a regional scale–way forward to the future hazard atlas in Bangladesh. Malays J Geosci. 3(1):1–11.
  • Gebrehiwot A, Hashemi-Beni L, Thompson G, Kordjamshidi P, Langan TE. 2019. Deep convolutional neural network for flood extent mapping using unmanned aerial vehicles data. Sensors. 19(7):1486.
  • Ghorbanzadeh O, Blaschke T, Gholamnia K, Meena SR, Tiede D, Aryal J. 2019. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sens. 11(2):196.
  • Giupponi C, et al. 2015. Chapter 6—integrated risk assessment of water-related disasters. In: J F S P D, editor. Baldassarre hydrometeorological hazards, risks and disasters. Boston: Elsevier; p. 163–200.
  • Graves A. 2012. Supervised sequence labelling. In Supervised sequence labelling with recurrent neural networks. Berlin, Heidelberg: Springer; p. 5–13.
  • Gupta BB, Li KC, Leung VC, Psannis KE, Yamaguchi S. 2021. Blockchain-assisted secure fine-grained searchable encryption for a cloud-based healthcare cyberphysical system. IEEE/CAA J Autom Sin. 8(12):1877–1890.
  • Hall JW, Penning-Rowsell EC. 2011. Setting the scene for flood risk management. In: Pender G, Faulkner H, editors. Flood risk science and management. West Sussex, UK: Blackwell Publishing Ltd; p. 3–16.
  • Hamouda M, Nour El-Din M, Moursy F. 2009. Vulnerability assessment of water resources systems in the Eastern Nile Basin. Water Resour Manage. 23(13):2697–2725.
  • Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S. 2013. Global flood risk under climate change. Nature Clim Change. 3(9):816–821.
  • Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Comput. 9(8):1735–1780.
  • Hong H, Panahi M, Shirzadi A, Ma T, Liu J, Zhu AX, Chen W, Kougias I, Kazakis N. 2018. Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Sci Total Environ. 621:1124–1141.
  • Hong H, Tsangaratos P, Ilia I, Liu J, Zhu A-X, Xu C. 2018b. Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models. The case of Dayu County. Sci Total Environ. 630:1044–1056.
  • Hoque M, Tasfia S, Ahmed N, Pradhan B. 2019. Assessing spatial flood vulnerability at Kalapara Upazila in Bangladesh using an analytic hierarchy process. Sensors. 19(6):1302.
  • Islam A, Talukdar S, Mahato S, Kundu S, Eibek KU, Pham QB, Kuriqi A, Linh NTT. 2021. Flood susceptibility modelling using advanced ensemble machine learning models. Geosci Front. 12(3):101075.
  • Jain P, Coogan SC, Subramanian SG, Crowley M, Taylor S, Flannigan MD. 2020. A review of machine learning applications in wildfire science and management. Environ Rev. 28(4):478–505.
  • Janizadeh S, Avand M, Jaafari A, Phong TV, Bayat M, Ahmadisharaf E, Prakash I, Pham BT, Lee S. 2019. Prediction success of machine learning methods for flash flood susceptibility mapping in the Tafresh watershed, Iran. Sustainability. 11(19):5426.
  • Kalantar B, Ueda N, Saeidi V, Janizadeh S, Shabani F, Ahmadi K, Shabani F. 2021. Deep neural network utilizing remote sensing datasets for flood hazard susceptibility mapping in Brisbane, Australia. Remote Sens. 13(13):2638.
  • Kavzoglu T, Colkesen I. 2009. A kernel functions analysis for support vector machines for land cover classification. Int J Appl Earth Obs Geoinf. 11(5):352–359.
  • Kavzoglu T, Sahin EK, Colkesen I. 2014. Landslide susceptibility mapping using GIS based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides. 11(3):425–439.
  • Kellens W, Terpstra T, De Maeyer P. 2012. Perception and communication of flood risks: a systematic review of empirical research. Risk Analy An Int J. 33(1):24–49.
  • Khosravi K, Nohani E, Maroufinia E, Pourghasemi HR. 2016. A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Nat Hazards. 83(2):947–987.
  • Khosravi K, Panahi M, Golkarian A, Keesstra SD, Saco PM, Bui DT, Lee S. 2020. Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran. J Hydrol. 591:125552.
  • Khosravi K, Pham BT, Chapi K, Shirzadi A, Shahabi H, Revhaug I, Prakash I, Bui DT. 2018. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci Total Environ. 627:744–755.
  • Khosravi K, Shahabi H, Pham BT, Adamowski J, Shirzadi A, Pradhan B, Dou J, Ly H-B, Gróf G, Ho HL, et al. 2019. A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. J Hydrol. 573:311–323.,
  • Kia MB, Pirasteh S, Pradhan B, Mahmud AR, Sulaiman WNA, Moradi A. 2012. An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environ Earth Sci. 67(1):251–264.
  • Kim HI, Han KY. 2020. Urban flood prediction using deep neural network with data augmentation. Water. 12(3):899.
  • Kourgialas NN, Karatzas GP. 2011. Flood management and a GIS modelling method to assess flood-hazard areas—a case study. Hydrol Sci J. 56(2):212–225.
  • Kumar D, Singh RB, Kaur R. 2019. SDG 13: Case study–monitoring and assessment of flood-inundated areas. In: Spatial information technology for sustainable development goals. Cham: Springer; p. 151–156..
  • Li X, Yan D, Wang K, Weng B, Qin T, Liu S. 2019. Flood risk assessment of global watersheds based on multiple machine learning models. Water. 11(8):1654.
  • Luo L, Chen X. 2013. Integrating piecewise linear representation and weighted support vector machine for stock trading signal prediction. Appl Soft Comput. 13(2):806–816.
  • Luu C, Pham BT, Van Phong T, Costache R, Nguyen HD, Amiri M, Bui QD, Nguyen LT, Van Le H, Prakash I, et al. 2021. GIS-based ensemble computational models for flood susceptibility prediction in the Quang Binh Province, Vietnam. J Hydrol. 599:126500.
  • Malik S, Pal SC, Chowdhuri I, Chakrabortty R, Roy P, Das B. 2020. Prediction of highly flood prone areas by GIS based heuristic and statistical model in a monsoon dominated region of Bengal Basin. Remote Sens Appl: Soc Environ. 19:100343.
  • McBain W. 2012. Twenty-first century flood risk management. In: Sayers PB, editor. Flood risk. London: Thomas Telford Limited; p. 7–22.
  • Melillo JM, Richmond T, Yohe GW, eds. 2014. Climate change impacts in the United States: the third National Climate Assessment. Washington, DC: U.S. Global Change Research Program.
  • Messner F, Meyer V. 2006. Flood damage, vulnerability and risk perception–challenges for flood damage research. In: Schanze J, Zeman E, Marsalek J, editors. Flood risk management: Hazards, vulnerability and mitigation measures. Dordrecht, The Netherlands: Springer; p. 149–169.
  • Mirzaei S, Vafakhah M, Pradhan B, Alavi SJ. 2021. Flood susceptibility assessment using extreme gradient boosting (EGB), Iran. Earth Sci Inform. 14(1):51–67.
  • Nachappa TG, Piralilou ST, Gholamnia K, Ghorbanzadeh O, Rahmati O, Blaschke T. 2020. Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. J Hydrol. 590:125275.
  • Naghibi SA, Hashemi H, Berndtsson R, Lee S. 2020. Application of extreme gradient boosting and parallel random forest algorithms for assessing groundwater spring potential using DEM-derived factors. J Hydrol. 589:125197.
  • Newman L. 2005. Uncertainty, innovation, and dynamic sustainable development. Sustain Sci Pract Policy. 1(2):25–31.
  • Ngo PTT, Hoang ND, Pradhan B, Nguyen QK, Tran XT, Nguyen QM, Nguyen VN, Samui P, Tien Bui D. 2018. A novel hybrid swarm optimized multilayer neural network for spatial prediction of flash floods in tropical areas using sentinel-1 SAR imagery and geospatial data. Sensors. 18(11):3704.
  • Nguyen GN, Le Viet NH, Elhoseny M, Shankar K, Gupta BB, Abd El-Latif AA. 2021. Secure blockchain enabled Cyber–physical systems in healthcare using deep belief network with ResNet model. J Parallel Distr Comput. 153:150–160.
  • Nguyen P, Shearer EJ, Tran H, Ombadi M, Hayatbini N, Palacios T, Huynh P, Braithwaite D, Updegraff G, Hsu K, et al. 2019. The CHRS Data Portal, an easily accessible public repository forPERSIANN global satellite precipitation data. Sci Data. 6:180296.
  • Novikov SP, Kazakov OD, Kulagina NA, Azarenko NY. 2018. Blockchain and smart contracts in a decentralized health infrastructure. In 2018 IEEE International Conference" Quality Management, Transport and Information Security, Information Technologies"(IT&QM&IS); pp. 697–703. IEEE
  • Paul GC, Saha S, Hembram TK. 2019. Application of the GIS-based probabilistic models for mapping the flood susceptibility in Bansloi sub-basin of Ganga-Bhagirathi river and their comparison. Remote Sens Earth Syst Sci. 2(2–3):120–146.
  • Poonia V, Goyal MK, Gupta BB, Gupta AK, Jha S, Das J. 2021. Drought occurrence in different river basins of India and blockchain technology-based framework for disaster management. J Cleaner Prod. 312:127737.
  • Rahman M, Chen N, Elbeltagi A, Islam MM, Alam M, Pourghasemi HR, Tao W, Zhang J, Shufeng T, Faiz H, et al. 2021. Application of stacking hybrid machine learning algorithms in delineating multi-type flooding in Bangladesh. J Environ Manage. 295:113086.
  • Rahman M, Chen N, Islam MM, Dewan A, Pourghasemi HR, Washakh RMA, Nepal N, Tian S, Faiz H, Alam M, et al. 2021. Location-allocation modeling for emergency evacuation planning with GIS and remote sensing: a case study of Northeast Bangladesh. Geosci Front. 12(3):101095.
  • Rahman M, Ningsheng C, Islam MM, Dewan A, Iqbal J, Washakh RMA, Shufeng T. 2019. Flood susceptibility assessment in Bangladesh using machine learning and multi-criteria decision analysis. Earth Syst Environ. 3(3):585–601.
  • Rahman MS, Islam ARMT. 2019. Are precipitation concentration and intensity changing in Bangladesh overtimes? Analysis of the possible causes of changes in precipitation systems. Sci Total Environ. 690:370–387.
  • Rahmati O, Haghizadeh A, Pourghasemi HR, Noormohamadi F. 2016. Gully erosion susceptibility mapping: The role of gis-based bivariate statistical models and their comparison. Nat Hazards. 82(2):1231–1258.
  • Rashid KM, Louis J. 2019. Times-series data augmentation and deep learning for construction equipment activity recognition. Adv Eng Inf. 42:100944.
  • Richards J, White I, Carter J. 2008. Local planning practice and flood risk management in England: is there a collective implementation deficit? eue. 2:11–20.
  • Rimba AB, Setiawati MD, Sambah AB, Miura F. 2017. Physical flood vulnerability mapping applying geospatial techniques in Okazaki City, Aichi Prefecture, Japan. Urban Science. 1(1):7.
  • Rudin C. 2019. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell. 1(5):206–215.
  • Ruidas D, Chakrabortty R, Islam ARMT, Saha A, Pal SC. 2022. A novel hybrid of meta-optimization approach for flash flood-susceptibility assessment in a monsoon-dominated watershed. Eastern India. Environ Earth Sci. 81(5):1–22.
  • Sahana M, Patel PP. 2019. A comparison of frequency ratio and fuzzy logic models for flood susceptibility assessment of the lower Kosi River Basin in India. Environ Earth Sci. 78(10):1–27.
  • Sahana M, Rehman S, Sajjad H, Hong H. 2020. Exploring effectiveness of frequency ratio and support vector machine models in storm surge flood susceptibility assessment: a study of Sundarban Biosphere Reserve, India. Catena. 189:104450.
  • Santos PP, Reis E, Pereira S, Santos M. 2019. A flood susceptibility model at the national scale based on multicriteria analysis. Sci Total Environ. 667:325–337.
  • Sarkar D, Mondal P. 2020. Flood vulnerability mapping using frequency ratio (FR) model: a case study on Kulik river basin, Indo-Bangladesh Barind region. Appl Water Sci. 10(1):1–13.
  • Sarkar SK, Ansar SB, Ekram KMM, Khan MH, Talukdar S, Naikoo MW, Islam A, Rahman A, Mosavi A. 2022. Developing robust flood susceptibility model with small numbers of parameters in highly fertile regions of Northwest Bangladesh for sustainable flood and agriculture management. Sustainability. 14(7):3982.
  • Sayers P, Yli GG, Penning-Rowsell E, Shen F, Wen K, Chen Y, Le Quesne T. 2013. Flood risks management: a strategic approach. Paris: UNESCO,
  • Scoones I, Leach M, Smith A, Stagl S, Stirling A, Thompson J. 2007. Dynamic systems and the challenge of sustainability. STEPS Working Paper 1, STEPS Centre: Brighton.
  • Shah MAR, Douven W, Werner M, Leentvaar J. 2012. Flood warning responses of farmer households: a case study in Uria Union in the Brahmaputra flood plain, Bangladesh. J Flood Risk Manage. 5(3):258–269.
  • Shah MAR, Rahman A, Chowdhury SH. 2018. Challenges for achieving sustainable flood risk management. J Flood Risk Manage. 11:S352–S358.
  • Shahabi H, Shirzadi A, Ghaderi K, Omidvar E, Al-Ansari N, Clague JJ, Geertsema M, Khosravi K, Amini A, Bahrami S, et al. 2020. Flood detection and susceptibility mapping using sentinel-1 remote sensing data and a machine learning approach: Hybrid intelligence of bagging ensemble based on k-nearest neighbor classifier. Remote Sens. 12(2):266.
  • Sheela K, Priya C. 2021. Enhancement of Iot Security Solutions Blockchain Technology. In: Blockchain applications for secure IoT frameworks: Technologies shaping the future. India: Bentham Science Publishers; Vol. 1; p. 131.
  • Sikora RA. 2015. Modified stacking ensemble machine learning algorithm using genetic algorithms. Handbook of Research on Organizational Transformations through Big Data Analytics. IGi Global; 43–53.
  • Sullivan C. 2011. Quantifying water vulnerability: a multidimensional approach Stoch. Stoch Environ Res Risk Assess. 25(4):627–640.
  • Swan M. 2015. Blockchain thinking: The brain as a decentralized autonomous corporation [commentary]. IEEE Technol Soc Mag. 34(4):41–52.
  • Talukdar S, Ghose B, Salam R, Mahato S, Pham QB, Linh NTT, Costache R, Avand M. 2020. Flood susceptibility modeling in Teesta River basin, Bangladesh using novel ensembles of bagging algorithms. Stoch Environ Res Risk Assess. 34(12):2277–2300.
  • Tang D, Dai R, Tang L, Li X. 2020. Low-rate DoS attack detection based on two-step cluster analysis and UTR analysis. Hum Cent Comput Inf Sci. 10(1):6.
  • Tehrany MS, Pradhan B, Jebur MN. 2014. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J Hydrol. 512:332–343.
  • Termeh SVR, Kornejady A, Pourghasemi HR, Keesstra S. 2018. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Sci Total Environ. 615:438–451.
  • Tien Bui D, Pradhan B, Lofman O, Revhaug I. 2012. Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and naïve bayes models. Math Probl Eng. 2012:1–26.
  • Vannucci E, Pagano AJ, Romagnoli F. 2021. Climate change management: a resilience strategy for flood risk using Blockchain tools. Decisions Econ Finan. 44(1):177–190.
  • Wang Y, Fang Z, Hong H, Peng L. 2020. Flood susceptibility mapping using convolutional neural network frameworks. J Hydrol. 582:124482.
  • Wang Y, Hong H, Chen W, Li S, Panahi M, Khosravi K, Shirzadi A, Shahabi H, Panahi S, Costache R. 2019. Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography-based optimization and imperialistic competitive algorithm. J Environ Manage. 247:712–729.
  • Wang Y, Li Z, Tang Z, Zeng G. 2011. A GIS-based spatial multi-criteria approach for flood risk assessment in the Dongting Lake Region, Hunan, Central China. Water Resour Manage. 25(13):3465–3484.
  • Wolpert DH. 1992. Stacked generalization. Neural Network. 5(2):241–259.
  • Wubalem A, Tesfaw G, Dawit Z, Getahun B, Mekuria T, Jothimani M. 2020. Comparison of statistical and analytical hierarchy process methods on flood susceptibility mapping: in a case study of Tana sub-basin in northwestern Ethiopia. Nat Hazards Earth Syst Sci Discuss:1–43.
  • Xu L, Cui S, Wang X, Tang J, Nitivattananon V, Ding S, Nguyen Nguyen M., 2021. Dynamic risk of coastal flood and driving factors: Integrating local sea level rise and spatially explicit urban growth. J Cleaner Production. 321:129039.
  • Yi Y, Zhang Z, Zhang W, Jia H, Zhang J. 2020. Landslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: a case study in Jiuzhaigou region. Catena. 195:104851.
  • Youssef AM, Pradhan B, Dikshit A, Mahdi AM. 2022. Comparative study of convolutional neural network (CNN) and support vector machine (SVM) for flood susceptibility mapping: a case study at Ras Gharib, Red Sea, Egypt. Geocarto Int. 2022:1–28.
  • Zhang Q, Gu X, Singh VP, Shi P, Sun P. 2018. More frequent flooding? Changes in flood frequency in the Pearl River basin, China, since 1951 and over the past 1000 years. Hydrol Earth Syst Sci. 22(5):2637–2653.
  • Zhang Q, Zhang J. 2016. Drought hazard assessment in typical corn cultivated areas of China at present and potential climate change. Nat Hazards. 81(2):1323–1331.
  • Zhao G, Pang B, Xu Z, Yue J, Tu T. 2018. Mapping flood susceptibility in mountainous areas on a national scale in China. Sci Total Environ. 615:1133–1142.
  • Zhao J, Fan W, Zhai X. 2020. Identification of land-use characteristics using bicycle sharing data: A deep learning approach. J Transp Geogr. 82:102562.
  • Zhou ZH. 2009. Ensemble learning. Encycl Biom. 1:270–273.