764
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Spatiotemporal variation of net primary productivity influenced by climatic variables in the karst area of China

, , , , &
Pages 1-20 | Received 26 May 2022, Accepted 22 Sep 2022, Published online: 06 Oct 2022

References

  • Asuero AG, Sayago A, Gonzalez AG. 2006. The correlation coefficient: An overview. Crit Rev Anal Chem. 36(1):41–59.
  • Chang Q, Xiao XM, Wu XC, Doughty R, Jiao WZ, Bajgain R, Qin YW, Wang J. 2020. Estimating site-specific optimum air temperature and assessing its effect on the photosynthesis of grasslands in mid- to high-latitudes. Environ Res Lett. 15(3):034064.
  • Chen F, Wang SJ, Bai XY, Liu F, Zhou DQ, Tian YC, Luo GJ, Li Q, Wu LH, Zheng C, et al. 2021a. Assessing spatial-temporal evolution processes and driving forces of karst rocky desertification. Geocarto Int. 36(3):262–280.
  • Chen T, Werf GR, Jeu RAM, Wang G, Dolman AJ. 2013. A global analysis of the impact of drought on net primary productivity. Hydrol Earth Syst Sci. 17(10):3885–3894.
  • Chen TT, Peng L, Liu SQ, Wang Q. 2017. Spatio-temporal pattern of net primary productivity in Hengduan Mountains area, China: impacts of climate change and human activities. Chin Geogr Sci. 27(6):948–962.
  • Chen W, Bai S, Zhao HM, Han XR, Li LH. 2021b. Spatiotemporal analysis and potential impact factors of vegetation variation in the karst region of Southwest China. Environ Sci Pollut Res Int. 28(43):61258–61273.
  • Cheng QP, Gao L, Zhong FL, Zuo XA, Ma MM. 2020. Spatiotemporal variations of drought in the Yunnan-Guizhou Plateau, southwest China, during 1960-2013 and their association with large-scale circulations and historical records. Ecol. Indic. 112:18.
  • Chu HS, Venevsky S, Wu C, Wang MH. 2019. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci Total Environ. 650(Pt 2):2051–2062.
  • Ding YB, Xu JT, Wang XW, Cai HJ, Zhou ZQ, Sun YN, Shi HY. 2021. Propagation of meteorological to hydrological drought for different climate regions in China. J Environ Manage. 283:12.
  • Ding YX, Li Z, Peng SZ. 2020. Global analysis of time-lag and -accumulation effects of climate on vegetation growth. Int J Appl Earth Obs Geoinf. 92:12.
  • Eisfelder C, Klein I, Niklaus M, Kuenzer C. 2014. Net primary productivity in Kazakhstan, its spatio-temporal patterns and relation to meteorological variables. J. Arid. Environ. 103:17–30.
  • Feng YH, Zhu JX, Zhao X, Tang ZY, Zhu JL, Fang JY. 2019. Changes in the trends of vegetation net primary productivity in China between 1982 and 2015. Environ Res Lett. 14(12):124009.
  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 281(5374):237–240.
  • Gahlot S, Shu SJ, Jain AK, Roy SB. 2017. Estimating trends and variation of net biome productivity in India for 1980-2012 using a land surface model. Geophys Res Lett. 44:11573–11579.
  • Ge WY, Deng LQ, Wang F, Han JQ. 2021. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016. Sci Total Environ. 773:11.
  • Guo BB, Zhang J, Meng XY, Xu TB, Song YY. 2020. Long-term spatio-temporal precipitation variations in China with precipitation surface interpolated by ANUSPLIN. Sci Rep. 10(1):17.
  • Hu ZY, Wang SJ, Bai XY, Luo GJ, Li Q, Wu LH, Yang YJ, Tian SQ, Li CJ, Deng YH. 2020. Changes in ecosystem service values in karst areas of China. Agric Ecosyst Environ. 301:16.
  • Jian N. 1997. Development of Kira’s indices and its application to vegetation-climate interaction study of China. J Appl Ecol. 8:161–170.
  • Jiang DB, Zhang Y, Lang XM. 2011. Vegetation feedback under future global warming. Theor Appl Climatol. 106(1–2):211–227.
  • Keenan TF, Baker I, Barr A, Ciais P, Davis K, Dietze M, Dragon D, Gough CM, Grant R, Hollinger D, et al. 2012. Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO2 exchange. Glob Change Biol. 18(6):1971–1987.
  • Kira T. 1991. Forest ecosystems of east and southeast-Asia in a global perspective. Ecol Res. 6(2):185–200.
  • Knapp AK, Beier C, Briske DD, Classen AT, Luo Y, Reichstein M, Smith MD, Smith SD, Bell JE, Fay PA, et al. 2008. Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience. 58(9):811–821.
  • Kumar M, Singh H, Pandey R, Singh MP, Ravindranath NH, Kalra N. 2019. Assessing vulnerability of forest ecosystem in the Indian Western Himalayan region using trends of net primary productivity. Biodivers Conserv. 28(8–9):2163–2182.
  • Li CH, Wang YT, Wu XD, Cao HJ, Li WP, Wu TH. 2021a. Reducing human activity promotes environmental restoration in arid and semi-arid regions: A case study in Northwest China. Sci Total Environ. 768:9.
  • Li SL, Liu CQ, Chen JA, Wang SJ. 2021b. Karst ecosystem and environment: characteristics, evolution processes, and sustainable development. Agric Ecosyst Environ. 306:4.
  • Li J, Xi MF, Wang LJ, Li N, Wang HW, Qin F. 2022. Vegetation responses to climate change and anthropogenic activity in China, 1982 to 2018. Int J Environ Res Public Health. 19:20.
  • Liang W, Yang YT, Fan DM, Guan HD, Zhang T, Long D, Zhou Y, Bai D. 2015. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agric For Meteorol. 204:22–36.
  • Linderholm HW. 2006. Growing season changes in the last century. Agric For Meteorol. 137(1–2):1–14.
  • Liu FH, Xu CY, Yang XX, Ye XC. 2020. Controls of climate and land-use change on terrestrial net primary productivity variation in a subtropical humid basin. Remote Sens. 12:20.
  • Liu Q, Piao SL, Fu YSH, Gao MD, Penuelas J, Janssens IA. 2019. Climatic warming increases spatial synchrony in spring vegetation phenology across the northern hemisphere. Geophys Res Lett. 46(3):1641–1650.
  • Liu XF, Zhu X, Li SS, Liu YX, Pan YZ. 2015. Changes in growing season vegetation and their associated driving forces in China during 2001-2012. Remote Sens. 7(11):15517–15535.
  • Luo ZH, Wu WC, Yu XJ, Song QM, Yang J, Wu JH, Zhang HJ. 2018. Variation of net primary production and its correlation with climate change and anthropogenic activities over the Tibetan plateau. Remote Sens. 10:22.
  • Ma BX, Jing JL, Liu B, Xu Y, Dou SQ, He HC. 2022. Quantitative assessment of the relative contributions of climate change and human activities to NPP changes in the southwest karst area of China. Environ Sci Pollut Res. 1:15.
  • Ogle K. 2018. Microbes weaken soil carbon sink. Nature. 560(7716):32–33.
  • Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, et al. 2011. A large and persistent carbon sink in the world’s forests. Science. 333(6045):988–993.
  • Pei J, Wang L, Wang XY, Niu Z, Kelly M, Song XP, Huang N, Geng J, Tian HF, Yu Y, et al. 2019. Time series of Landsat imagery shows vegetation recovery in two fragile Karst watersheds in southwest China from 1988 to 2016. Remote Sens. 11:26.
  • Piao SL, Friedlingstein P, Ciais P, Viovy N, Demarty J. 2007. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob Biogeochem Cycle. 21:11.
  • Potter CS, Klooster SA. 1997. Global model estimates of carbon and nitrogen storage in litter and soil pools: response to changes in vegetation quality and biomass allocation. Tellus Ser B-Chem Phys Meteorol. 49(1):1–17.
  • Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA. 1993. Terrestrial ecosystem production – a process model-based on global satellite and surface data. Global Biogeochem Cycles. 7(4):811–841.
  • Prince SD, Goward SN. 1995. Global primary production: a remote sensing approach. J Biogeogr. 22(4/5):815–835.
  • Qi XZ, Jia JH, Liu HY, Lin ZS. 2019. Relative importance of climate change and human activities for vegetation changes on China’s silk road economic belt over multiple timescales. Catena. 180:224–237.
  • Qian C, Shao LQ, Hou XH, Zhang BB, Chen W, Xia XL. 2019. Detection and attribution of vegetation greening trend across distinct local landscapes under China’s Grain to Green Program: a case study in Shaanxi Province. Catena. 183:104182.
  • Qiao YN, Jiang YJ, Zhang CY. 2021. Contribution of karst ecological restoration engineering to vegetation greening in southwest China during recent decade. Ecol Indic. 121:15.
  • Rafique R, Zhao F, de Jong R, Zeng N, Asrar GR. 2016. Global and regional variability and change in terrestrial ecosystems net primary production and NDVI: a model-data comparison. Remote Sens. 8:16.
  • Sen PK. 1968. Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc. 63(324):1379–1389.
  • Song LY, Li MY, Xu H, Guo Y, Wang Z, Li YC, Wu XJ, Feng LC, Chen J, Lu X, et al. 2021. Spatiotemporal variation and driving factors of vegetation net primary productivity in a typical karst area in China from 2000 to 2010. Ecol Indic. 132:18.
  • Stocker T. 2014. Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge (UK), New York (NY): Cambridge University Press.
  • Sun H, Chen Y, Xiong J, Ye C, Yong Z, Wang Y, He D, Xu S, J.I.J.o.A.E.O. 2022. Geoinformation relationships between climate change, phenology, edaphic factors, and net primary productivity across the Tibetan Plateau. 102708.
  • Theil H. 1950. A rank-invariant method of linear and polynomial regression analysis. Indagationes Mathematicae. 12:173.
  • Wang H, Liu G, Li Z, Wang P, Wang Z. 2019. Comparative assessment of vegetation dynamics under the influence of climate change and human activities in five ecologically vulnerable regions of China from 2000 to 2015. Forests. 10(4):317.
  • Wang J, Meng JJ, Cai YL. 2008. Assessing vegetation dynamics impacted by climate change in the southwestern Karst region of China with AVHRR NDVI and AVHRR NPP time-series. Environ Geol. 54(6):1185–1195.
  • Wang JF, Hu Y. 2012. Environmental health risk detection with GeogDetector. Environ Modell Softw. 33:114–115.
  • Wang YH, Dai EF, Wu CS. 2021. Spatiotemporal heterogeneity of net primary productivity and response to climate change in the mountain regions of southwest China. Ecol. Indic. 132:13.
  • Wei XC, Zhou QW, Luo Y, Cai MY, Zhou X, Yan WH, Peng DW, Zhang J. 2021. Vegetation dynamics and its response to driving factors in typical karst regions, Guizhou Province, China. Front Earth Sci. 15(1):167–183.
  • Wen YY, Liu XP, Pei FS, Li X, Du GM. 2018. Non-uniform time-lag effects of terrestrial vegetation responses to asymmetric warming. Agric For Meteorol. 252:130–143.
  • Wu LH, Wang SJ, Bai XY, Tian YC, Luo GJ, Wang JF, Li Q, Chen F, Deng YH, Yang YJ, et al. 2020. Climate change weakens the positive effect of human activities on karst vegetation productivity restoration in southern China. Ecol Indic. 115:16.
  • Xiao HL, Weng QH. 2007. The impact of land use and land cover changes on land surface temperature in a karst area of China. J Environ Manage. 85(1):245–257.
  • Xue P, Liu HY, Zhang MY, Gong HB, Cao L. 2022. Nonlinear characteristics of NPP based on ensemble empirical mode decomposition from 1982 to 2015 – a case study of six coastal provinces in Southeast China. Remote Sens. 14(1):15.
  • Yan H, Ran Q, Hu R, Xue K, Zhang B, Zhou S, Zhang Z, Tang L, Che R, Pang Z, et al. 2022. Machine learning-based prediction for grassland degradation using geographic, meteorological, plant and microbial data. Ecol Indic. 137:108738.
  • Yang HF, Zhong XN, Deng SQ, Xu H. 2021. Assessment of the impact of LUCC on NPP and its influencing factors in the Yangtze River basin, China. Catena. 206:105542.
  • Yang J, Zhang XC, Luo ZH, Yu XJ. 2017. Nonlinear variations of net primary productivity and its relationship with climate and vegetation phenology, China. Forests. 8(10):361.
  • Yin LC, Wang XF, Feng XM, Fu BJ, Chen YZ. 2020. A comparison of SSEBop-model-based evapotranspiration with eight evapotranspiration products in the Yellow River Basin. China Remote Sens. 12:30.
  • Yuan XL, Hamdi R, Ochege FU, Kurban A, De Maeyer P. 2021. The sensitivity of global surface air temperature to vegetation greenness. Int J Climatol. 41(1):483–496.
  • Zhe M, Zhang XQ. 2021. Time-lag effects of NDVI responses to climate change in the Yamzhog Yumco Basin, South Tibet. Ecol. Indic. 124:7.
  • Zhou GS, Wang YH, Jiang YL, Yang ZY. 2002. Estimating biomass and net primary production from forest inventory data: a case study of China’s Larix forests. For Ecol Manage. 169(1–2):149–157.
  • Zhu W-Q, Pan Y-Z, Zhang J-S. 2007. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. Chin J Plant Ecol. 31:413.