1,228
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mapping the spatial distribution and potential expansion of agricultural plastic greenhouses in Tartus, Syria using GIS and remote sensing techniques

ORCID Icon & ORCID Icon
Pages 1-24 | Received 23 Jun 2022, Accepted 04 Oct 2022, Published online: 20 Oct 2022

References

  • Abdel-Ghany AM, Al-Helal IM, Picuno P, Shady MR. 2016. Modified plastic net-houses as alternative agricultural structures for saving energy and water in hot and sunny regions. Renew Energy. 93:332–339. https://doi.org/10.1016/j.renene.2016.02.084.
  • Agüera F, Aguilar F, Aguilar M. 2008. Using texture analysis to improve per-pixel classification of very high resolution images for mapping plastic greenhouses. ISPRS J Photogramm Remote Sens. 63(6):635–646. https://doi.org/10.1016/j.isprsjprs.2008.03.003.
  • Agüera F, Aguilar MA, Aguilar FJ. 2006. Detecting greenhouse changes from QuickBird imagery on the Mediterranean coast. Int J Remote Sens. 27(21):4751–4767. https://doi.org/10.1080/01431160600702681.
  • Agüera F, Liu JG. 2009. Automatic greenhouse delineation from QuickBird and Ikonos satellite images. Comput Electron Agric. 66(2):191–200. https://doi.org/10.1016/j.compag.2009.02.001.
  • Aguilar M, Bianconi F, Aguilar F, Fernández I. 2014. Object-based greenhouse classification from GeoEye-1 and WorldView-2 stereo imagery. Remote Sens. 6(5):3554–3582. https://doi.org/10.3390/rs6053554.
  • Aguilar MA, Nemmaoui A, Novelli A, Aguilar FJ, Lorca AG. 2016. Object-based greenhouse mapping using very high resolution satellite data and Landsat 8 time series. Remote Sens. 8(6):513. https://doi.org/10.3390/rs8060513.
  • Aguilera FB, Matarán AR, Pérez RC, Valenzuela LM. 2008. Simulating greenhouse growth in urban zoning on the coast of Granada (Spain). In Modelling environmental dynamics. Environmental science and engineering. Berlin, Heidelberg: Springer; p. 269–295. https://doi.org/10.1007/978-3-540-68498-5_10.
  • Akıncı H, Özalp Y, Turgut B. 2013. Agricultural land use suitability analysis using GIS and AHP technique. Comput Electron Agric. 97:71–82. https://doi.org/10.1016/j.compag.2013.07.006.
  • Al-maimani AM, Al-ismaili AM, Al-maktoumi AK, Charabi Y. 2019. Spatio-temporal distribution of greenhouses and affecting driving factors in Al-Batinah South, Oman, using GIS mapping. Am-Eursion J Sustain Agric. 13(2):13–33. https://doi.org/10.22587/aejsa.2019.13.2.2.
  • Al-taani A, Al-husban Y, Farhan I. 2021. Land suitability evaluation for agricultural use using GIS and remote sensing techniques: the case study of Ma’an Governorate, Jordan. Egypt J Remote Sensing Space Sci. 24(1):109–117. https://doi.org/10.1016/j.ejrs.2020.01.001.
  • Aldababseh A, Temimi M, Maghelal P, Branch O, Wulfmeyer V. 2018. Multi-criteria evaluation of irrigated agriculture suitability to achieve food security in an arid environment. Sustainability. 10(3):803–833. https://doi.org/10.3390/su10030803.
  • Alganci U, Kuru GN, Algan IY, Sertel E. 2019. Vineyard site suitability analysis by use of multicriteria approach applied on geo-spatial data. Geocarto Int. 34(12):1286–1299. https://doi.org/10.1080/10106049.2018.1493156.
  • Alsafadi K, Mohammed S, Habib H, Kiwan S, Hennawi S, Sharaf M. 2020. An integration of bioclimatic, soil, and topographic indicators for viticulture suitability using multi-criteria evaluation: a case study in the Western slopes of Jabal Al Arab—Syria. Geocarto Int. 35(13):1466–1488. https://doi.org/10.1080/10106049.2019.1583291.
  • Bandyopadhyay S, Jaiswal RK, Hegde VS, Jayaraman V. 2009. Assessment of land suitability potentials for agriculture using a remote sensing and GIS based approach. Int J Remote Sens. 30(4):879–895. https://doi.org/10.1080/01431160802395235.
  • Cengiz T, Akbulak C. 2009. Application of analytical hierarchy process and geographic information systems in land-use suitability evaluation: a case study of Dumrek village (Canakkale, Turkey). Int J Sustain Dev World Ecol. 16(4):286–294. https://doi.org/10.1080/13504500903106634.
  • Chaofan W, Jinsong D, Ke W, Ligang M, Tahmassebi A. 2017. Object-based classification approach for greenhouse mapping using Landsat-8 imagery. Int J Agric Biol Eng. 9(1). https://doi.org/10.3965/j.ijabe.20160901.1414.
  • Cillis G, Statuto D, Schettini E, Vox G, Picuno P. 2022. Implementing a GIS‐based digital atlas of agricultural plastics to reduce their environmental footprint. Part I: a deductive approach. Appl Sci. 12(3):1330. https://doi.org/10.3390/app12031330.
  • Congalton RG. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ. 37(1):35–46. https://doi.org/10.1016/0034-4257(91)90048-B.
  • Dehbi A, Youssef B, Chappey C, Mourad AHI, Picuno P, Statuto D. 2017. Multilayers polyethylene film for crop protection in harsh climatic conditions. Adv Mater Sci Eng. 2017:1–7. https://doi.org/10.1155/2017/4205862.
  • Elaalem M. 2013. A comparison of parametric and fuzzy multi-criteria methods for evaluating a comparison of parametric and fuzzy multi-criteria methods for evaluating land suitability for olive in Jeffara Plain of Libya. APCBEE Procedia. 5:405–409. https://doi.org/10.1016/j.apcbee.2013.05.070.
  • Elsheikh R, Rashid A, Shariff M, Amiri F, Ahmad NB, Balasundram SK, Soom MAM. 2013. Agriculture Land Suitability Evaluator (ALSE): a decision and planning support tool for tropical and subtropical crops. Comput Electron Agric. 93:98–110. https://doi.org/10.1016/j.compag.2013.02.003.
  • FAO. 1976. A framework for land evaluation. https://www.fao.org/3/x5310e/x5310e00.htm.
  • Feizizadeh B, Blaschke T. 2013. Land suitability analysis for Tabriz County, Iran: a multi-criteria evaluation approach using GIS. J Environ Plan Manage. 56(1):1–23. https://doi.org/10.1080/09640568.2011.646964.
  • Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 37(12):4302–4315. https://doi.org/10.1002/joc.5086.
  • Gao C, Wu Q, Dyck M, Lv J, He H. 2022. Greenhouse area detection in Guanzhong Plain, Shaanxi, China: spatio-temporal change and suitability classification. Int J Digit Earth. 15(1):226–248. https://doi.org/10.1080/17538947.2021.2023667.
  • García JL, Alvarado A, Blanco J, Jiménez E, Maldonado AA, Cortés G. 2014. Multi-attribute evaluation and selection of sites for agricultural product warehouses based on an Analytic Hierarchy Process. Comput Electron Agric. 100:60–69. https://doi.org/10.1016/j.compag.2013.10.009.
  • Herzberg R, Pham TG, Kappas M, Wyss D, Tran CTM. 2019. Multi-criteria decision analysis for the land evaluation of potential agricultural land use types in a hilly area of central Vietnam. Land. 8(6):90–25. https://doi.org/10.3390/land8060090.
  • Ibrahim WY, Batzli S, Menzel WP. 2014. Agricultural policy effects on land cover and land use over 30 years in Tartous, Syria, as seen in Landsat imagery. J Appl Remote Sens. 8(1):083506. https://doi.org/10.1117/1.jrs.8.083506.
  • Jafari S, Zaredar N. 2010. Land suitability analysis using multi attribute decision making approach. IJESD. 1(5):441–445. https://doi.org/10.7763/IJESD.2010.V1.85.
  • Jiménez-Lao R, Aguilar FJ, Nemmaoui A, Aguilar MA. 2020. Remote sensing of agricultural greenhouses and plastic-mulched farmland: an analysis of worldwide research. Remote Sens. 12(16):2649–2620. https://doi.org/10.3390/RS12162649.
  • Justus F, Yu D. 2014. Spatial distribution of greenhouse commercial horticulture in Kenya and the role of demographic, infrastructure and topo-edaphic factors. IJGI. 3(1):274–296. https://doi.org/10.3390/ijgi3010274.
  • Karimi F, Sultana S, Babakan AS, Royall D. 2018. Land suitability evaluation for organic agriculture of wheat using GIS and multicriteria analysis. Pap Appl Geogr. 4(3):326–342. https://doi.org/10.1080/23754931.2018.1448715.
  • Khatib A, Malinnikov VA. 2021a. Automated classification of the vegetation cover of Mediterranean landscape using spectral-textural and topographic features of high spatial resolution satellite imagery. Sovr Probl DZZ Kosm. 18(2):51–63. https://doi.org/10.21046/2070-7401-2021-18-2-51-63.
  • Khatib A, Malinnikov VA. 2021b. Method for estimating vegetation cover transformations in the Syrian Mediterranean region based on remotely sensed satellite data using heuristic rules. Sovr Probl DZZ Kosm. 18(4):115–127. https://doi.org/10.21046/2070-7401-2021-18-4-115-127.
  • Koc-san D. 2013. Evaluation of different classification techniques for the detection of glass and plastic greenhouses from WorldView-2 satellite imagery. J Appl Remote Sens. 7(1):073553–073520. https://doi.org/10.1117/1.JRS.7.073553.
  • Malczewski J. 2004. GIS-based land-use suitability analysis: a critical overview. Prog Plan. 62(1):3–65. https://doi.org/10.1016/j.progress.2003.09.002.
  • Malczewski J. 2006. GIS‐based multicriteria decision analysis: a survey of the literature. Int J Geogr Inf Sci. 20(7):703–726. https://doi.org/10.1080/13658810600661508.
  • Malczewski J, Jankowski P. 2020. Emerging trends and research frontiers in spatial multicriteria analysis. Int J Geogr Inf Sci. 34(7):1257–1282. https://doi.org/10.1080/13658816.2020.1712403.
  • Malczewski J, Rinner C. 2015. Multicriteria decision analysis in geographic information science. 1st ed. Springer.
  • Mohammed S, Alsafadi K, Ali H, Nasir SM, Kiwan S, Hennawi S, Harsanyie E, Pham QB, Thi N, Linh T, et al. 2022. Assessment of land suitability potentials for winter wheat cultivation by using a multi criteria decision support-geographic information system (MCDS-GIS) approach in Al-Yarmouk Basin (S Syria). Geocarto Int. 37(6):1645–1663. https://doi.org/10.1080/10106049.2020.1790674.
  • Mokarram M, Mirsoleimani A. 2018. Using fuzzy-AHP and order weight average (OWA) methods for land suitability determination for citrus cultivation in ArcGIS (Case study: Fars province Iran). Physica A. 508:506–518. https://doi.org/10.1016/j.physa.2018.05.062.
  • Mustafa AA, Singh M, Sahoo RN, Ahmed N, Khanna M, Sarangi A, Mishra AK. 2011. Land suitability analysis for different crops: a multi criteria decision making approach using remote sensing and GIS. Researcher. 3(12):61–84.
  • Novelli A, Aguilar MA, Nemmaoui A, Aguilar FJ, Tarantino E. 2016. Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: A case study from Almería (Spain). Int J Appl Earth Observ Geoinf. 52:403–411. https://doi.org/10.1016/j.jag.2016.07.011.
  • Novelli A, Tarantino E. 2015. Combining ad hoc spectral indices based on LANDSAT-8 OLI/TIRS sensor data for the detection of plastic cover vineyard. Remote Sens Lett. 6(12):933–941. https://doi.org/10.1080/2150704X.2015.1093186.
  • Orhan O. 2021. Land suitability determination for citrus cultivation using a GIS-based multi-criteria analysis in Mersin, Turkey. Comput Electron Agric. 190:106433–106414. https://doi.org/10.1016/j.compag.2021.106433.
  • Ou C, Yang J, Du Z, Liu Y, Feng Q, Zhu D. 2019. Long-term mapping of a greenhouse in a typical protected agricultural region using Landsat imagery and the Google Earth Engine. Remote Sens. 12(1):55–23. https://doi.org/10.3390/rs12010055.
  • Pardossi A, Tognoni F, Incrocci L. 2004. Mediterranean greenhouse technology. Chronica Horticult. 44(2):28–34.
  • Perilla GA, Mas J. 2019. High-resolution mapping of protected agriculture in Mexico, through remote sensing data cloud geoprocessing sensing data cloud geoprocessing. Eur J Remote Sens. 52(1):532–541. https://doi.org/10.1080/22797254.2019.1686430.
  • Picuno P, Tortora A, Capobianco RL. 2011. Analysis of plasticulture landscapes in Southern Italy through remote sensing and solid modelling techniques. Landscape Urban Plan. 100(1–2):45–56. https://doi.org/10.1016/j.landurbplan.2010.11.008.
  • Rogge E, Nevens F, Gulinck H. 2008. Reducing the visual impact of ‘greenhouse parks’ in rural landscapes. Landscape Urban Plan J. 87(1):76–83. https://doi.org/10.1016/j.landurbplan.2008.04.008.
  • Saaty RW. 1987. The analytic hierarchy process—what it is and how it is used. Math Model. 9(3–5):161–176. https://doi.org/10.1016/0270-0255(87)90473-8.
  • Saaty TL. 1990. How to make a decision: the analytic hierarchy process. Eur J Oper Res. 48(1):9–26. https://doi.org/10.1016/0377-2217(90)90057-I.
  • Saaty TL. 2008. Decision making with the analytic hierarchy process. IJSSCI. 1(1):83–98. https://doi.org/10.1504/IJSSCI.2008.017590.
  • Saltuk B, Artun O. 2019. Multi-criteria decision system for greenhouse site selection in Gediz basin, Turkey using geographic information systems (GIS). Fresenius Environ Bull. 28(8):6358–6365.
  • Scarascia-Mugnozza G, Sica C, Picuno P. 2008. The optimisation of the management of agricultural plastic waste in Italy using a geographical information system. Acta Hortic. 801:219–226. https://doi.org/10.17660/ActaHortic.2008.801.20.
  • Shalaby A, Ouma Y, Tateishi R. 2006. Land suitability assessment for perennial crops using remote sensing and geographic information systems: a case study in northwestern Egypt. Arch Agron Soil Sci. 52(3):243–261. https://doi.org/10.1080/03650340600627167.
  • Shi L, Huang X, Zhong T, Taubenböck H. 2020. Mapping plastic greenhouses using spectral metrics derived from GaoFen-2 satellite data. IEEE J Sel Top Appl Earth Observ Remote Sens. 13:49–59. https://doi.org/10.1109/JSTARS.2019.2950466.
  • Sönmez K, Sari M. 2006. Use of remote sensing and geographic information system technologies for developing greenhouse databases. Turk J Agric For. 30:413–420.
  • Sun H, Wang L, Lin R, Zhang Z, Zhang B. 2021. Mapping plastic greenhouses with two-temporal Sentinel-2 images and 1D-CNN deep learning. Remote Sens. 13(14):2820–2822. https://doi.org/10.3390/rs13142820.
  • Sys C, Ranst E, Van, Debaveye J, Beernaert F. 1993. Land evaluation, Part III: Crop requirements. International Training Centre for Post-Graduate Soil Scientists. https://biblio.ugent.be/publication/233235.
  • Tercan E, Ali M. 2020. Development of a land suitability model for citrus cultivation using GIS and multi-criteria assessment techniques in Antalya province of Turkey. Ecol Indic. 117:106549–106511. https://doi.org/10.1016/j.ecolind.2020.106549.
  • Tognoni F, Pardossi A, Serra G. 1999. Strategies to match greenhouses to crop production. Acta Hortic. 481:451–462. https://doi.org/10.17660/ActaHortic.1999.481.52.
  • Tucker CJ. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ. 8(2):127–150. https://doi.org/10.1016/0034-4257(79)90013-0.
  • Yohannes H, Soromessa T. 2018. Land suitability assessment for major crops by using GIS-based multi-criteria approach in Andit Tid watershed, Ethiopia. Cogent Food Agric. 4(1):1470481. https://doi.org/10.1080/23311932.2018.1470481.
  • Yu B, Song W, Lang Y. 2017. Spatial patterns and driving forces of greenhouse land change in Shouguang City, China. Sustainability. 9(3):359–315. https://doi.org/10.3390/su9030359.
  • Zabihi H, Ahmad A, Vogeler I, Nor M, Golmohammadi M, Golein B, Nilashi M. 2015. Land suitability procedure for sustainable citrus planning using the application of the analytical network process approach and GIS. Comput Electron Agric. 117:114–126. https://doi.org/10.1016/j.compag.2015.07.014.
  • Zabihi H, Alizadeh M, Langat PK, Karami M, Shahabi H, Ahmad A, Said MN, Lee S. 2019. GIS multi-criteria analysis by ordered weighted averaging (OWA): toward an integrated citrus management strategy. Sustainability. 11(4):1009–1017. https://doi.org/10.3390/su11041009.
  • Zha Y, Gao J, Ni S. 2003. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens. 24(3):583–594. https://doi.org/10.1080/01431160304987.
  • Zhang X, Cheng B, Chen J, Liang C. 2021. High-resolution boundary refined convolutional neural network for automatic agricultural greenhouses extraction from GaoFen-2 satellite imageries. Remote Sens. 13(21):4237. https://doi.org/10.3390/rs13214237.
  • Zolekar RB, Bhagat VS. 2015. Multi-criteria land suitability analysis for agriculture in hilly zone: remote sensing and GIS approach. Comput Electron Agric. 118:300–321. https://doi.org/10.1016/j.compag.2015.09.016.