1,062
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Spatio-temporal shift in fire activity in the Indo-Gangetic region

, ORCID Icon &
Pages 1-19 | Received 27 Dec 2021, Accepted 01 Nov 2022, Published online: 11 Nov 2022

References

  • Andela N, Morton DC, Giglio L, Paugam R, Chen Y, Hantson S, Van Der Werf GR, Randerson JT. 2019. The Global Fire Atlas of individual fire size, duration, speed and direction. Earth Syst Sci Data. 11(2):529–552.
  • Archibald S, Lehmann CE, Gómez-Dans JL, Bradstock RA. 2013. Defining pyromes and global syndromes of fire regimes. Proc Natl Acad Sci USA. 110(16):6442–6447.
  • Archibald S, Scholes RJ, Roy DP, Roberts G, Boschetti L. 2010. Southern African fire regimes as revealed by remote sensing. Int J Wildland Fire. 19(7):861–878.
  • Artés T, Oom D, De Rigo D, Durrant TH, Maianti P, Libertà G, San-Miguel-Ayanz J. 2019. A global wildfire dataset for the analysis of fire regimes and fire behaviour. Sci Data. 6(1):1–1.
  • Awasthi A, Agarwal R, Mittal SK, Singh N, Singh K, Gupta PK. 2011. Study of size and mass distribution of particulate matter due to crop residue burning with seasonal variation in rural area of Punjab, India. J Environ Monit. 13(4):1073–1081.
  • Badarinath KV, Chand TK, Prasad VK. 2006. Agriculture crop residue burning in the Indo-Gangetic Plains–a study using IRS-P6 AWiFS satellite data. Curr Sci.91(8):1085–1089.
  • Badarinath KV, Kharol SK, Sharma AR, Prasad VK. 2009. Analysis of aerosol and carbon monoxide characteristics over Arabian Sea during crop residue burning period in the Indo-Gangetic Plains using multi-satellite remote sensing datasets. J Atmos Sol-Terr Phys. 71(12):1267–1276.
  • Bajocco S, Ferrara C, Guglietta D, Ricotta C. 2019. Fifteen years of changes in fire ignition frequency in Sardinia (Italy): a rich-get-richer process. Ecol Indic. 104:543–548.
  • Bikkina S, Andersson A, Kirillova EN, Holmstrand H, Tiwari S, Srivastava AK, Bisht DS, Gustafsson Ö. 2019. Air quality in megacity Delhi affected by countryside biomass burning. Nat Sustain. 2(3):200–205.
  • Bowman DM, Kolden CA, Abatzoglou JT, Johnston FH, van der Werf GR, Flannigan M. 2020. Vegetation fires in the Anthropocene. Nat Rev Earth Environ. 1(10):500–515.
  • Bray CD, Battye WH, Aneja VP. 2019. The role of biomass burning agricultural emissions in the Indo-Gangetic Plains on the air quality in New Delhi, India. Atmos Environ. 218:116983.
  • Chavardès RD, Daniels LD, Harvey JE, Greene GA, Marcoux H, Eskelson BNI, Gedalof Z, Brookes W, Kubian R, Cochrane JD, et al. 2021. Regional drought synchronised historical fires in dry forests of the Montane Cordillera Ecozone, Canada. Int J Wildland Fire. 31(1):67–80.
  • Chen Y, Morton DC, Jin Y, Collatz GJ, Kasibhatla PS, van der Werf GR, DeFries RS, Randerson JT. 2013. Long-term trends and interannual variability of forest, savanna and agricultural fires in South America. Carbon Manag. 4(6):617–638.
  • Chen D, Pereira JM, Masiero A, Pirotti F. 2017. Mapping fire regimes in China using MODIS active fire and burned area data. Appl Geogr. 85:14–26.
  • Choudhary M, Datta A, Jat HS, Yadav AK, Gathala MK, Sapkota TB, Das AK, Sharma PC, Jat ML, Singh R, et al. 2018. Changes in soil biology under conservation agriculture based sustainable intensification of cereal systems in Indo-Gangetic Plains. Geoderma. 313:193–204.
  • Chuvieco E, Giglio L, Justice C. 2008. Global characterization of fire activity: toward defining fire regimes from Earth observation data. Global Change Biol. 14(7):1488–1502.
  • Cochrane MA, Schulze MD. 1999. Fire as a Recurrent Event in Tropical Forests of the Eastern Amazon: effects on Forest Structure, Biomass, and Species Composition 1. Biotropica. 31(1):2–16.
  • Dhillon BS, Kataria P, Dhillon PK. 2010. National food security vis-à-vis sustainability of agriculture in high crop productivity regions. Curr Sci. 98(1):33–36.
  • Downing WM, Dunn CJ, Thompson MP, Caggiano MD, Short KC. 2022. Human ignitions on private lands drive USFS cross-boundary wildfire transmission and community impacts in the western US. Sci. Rep. 12(1):1–14.
  • Dwomoh FK, Wimberly MC. 2017. Fire regimes and their drivers in the upper Guinean region of West Africa. Remote Sens. 9(11):1117.
  • Edwards AC, Russell-Smith J, Maier SW. 2018. A comparison and validation of satellite-derived fire severity mapping techniques in fire prone north Australian savannas: extreme fires and tree stem mortality. Remote Sens Environ. 206:287–299.
  • Friedl M, Sulla-Menashe D. 2015. MCD12C1 MODIS/Terra + Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V006 [Data set]. NASA EOSDIS Land Processes DAAC.
  • Giglio L, Boschetti L, Roy DP, Humber ML, Justice CO. 2018. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens Environ. 217:72–85.
  • Giglio L, Schroeder W, Justice CO. 2016. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens Environ. 178:31–41.
  • Gupta PK, Sahai S, Singh N, Dixit CK, Singh DP, Sharma C, Tiwari MK, Gupta RK, Garg SC. 2004. Residue burning in rice–wheat cropping system: causes and implications. Curr Sci. 87(12):1713–1717.
  • Hall JV, Zibtsev SV, Giglio L, Skakun S, Myroniuk V, Zhuravel O, Goldammer JG, Kussul N. 2021. Environmental and political implications of underestimated cropland burning in Ukraine. Environ Res Lett. 16(6):064019.
  • Hartigan JA, Wong MA. 1979. Algorithm AS 136: a k-means clustering algorithm. J R Stat Soc Series C (Appl Stat). 28(1):100–108.
  • Hautier Y, Tilman D, Isbell F, Seabloom EW, Borer ET, Reich PB. 2015. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science. 348(6232):336–340.
  • Heward H, Smith AM, Roy DP, Tinkham WT, Hoffman CM, Morgan P, Lannom KO. 2013. Is burn severity related to fire intensity? Observations from landscape scale remote sensing. Int J Wildland Fire. 22(7):910–918.
  • Jenks GF. 1967. The data model concept in statistical mapping. In International yearbook of cartography, vol. 7. Gutersloh: C. Vertelsmans Verlag; p. 186–190.
  • Jethva H, Torres O, Field RD, Lyapustin A, Gautam R, Kayetha V. 2019. Connecting crop productivity, residue fires, and air quality over northern India. Sci Rep. 9(1):1–1.
  • Jordan NS, Ichoku C, Hoff RM. 2008. Estimating smoke emissions over the US Southern Great Plains using MODIS fire radiative power and aerosol observations. Atmos Environ. 42(9):2007–2022.
  • Kaskaoutis DG, Kumar S, Sharma D, Singh RP, Kharol SK, Sharma M, Singh AK, Singh S, Singh A, Singh D. 2014. Effects of crop residue burning on aerosol properties, plume characteristics, and long‐range transport over northern India. J Geophys Res Atmos. 119(9):5424–5444.
  • Kaufman YJ, Justice CO, Flynn LP, Kendall JD, Prins EM, Giglio L, Ward DE, Menzel WP, Setzer AW. 1998. Potential global fire monitoring from EOS‐MODIS. J Geophys Res. 103(D24):32215–32238.
  • Kelley DI, Bistinas I, Whitley R, Burton C, Marthews TR, Dong N. 2019. How contemporary bioclimatic and human controls change global fire regimes. Nat Clim Chang. 2019(9):690–696.
  • Kendall MG. 1955. Rank Correlation Methods. London: Griffin.
  • Liu T, Mickley LJ, McCarty JL. 2021. Global search for temporal shifts in fire activity: potential human influence on southwest Russia and north Australia fire seasons. Environ Res Lett. 16(4):044023.
  • Lizundia-Loiola J, Otón G, Ramo R, Chuvieco E. 2020. A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data. Remote Sens Environ. 236:111493.
  • Lohan SK, Jat HS, Yadav AK, Sidhu HS, Jat ML, Choudhary M, Peter JK, Sharma PC. 2018. Burning issues of paddy residue management in north-west states of India. Renew Sust Energ Rev. 81:693–706.
  • Mann HB. 1945. Nonparametric tests against trend. Econometrica. 13(3):245–259.
  • Mhawish A, Sarangi C, Babu P, Kumar M, Bilal M, Qiu Z. 2022. Observational evidence of elevated smoke layers during crop residue burning season over Delhi: potential implications on associated heterogeneous PM2. 5 enhancements. Remote Sens Environ. 280:113167.
  • Midgley GF, Bond WJ. 2015. Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change. Nature Clim Change. 5(9):823–829.
  • Nizar S, Dodamani BM. 2019. Spatiotemporal distribution of aerosols over the Indian subcontinent and its dependence on prevailing meteorological conditions. Air Qual Atmos Health. 12(4):503–517.
  • Page SE, Siegert F, Rieley JO, Boehm HD, Jaya A, Limin S. 2002. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature. 420(6911):61–65.
  • Pettitt AN. 1979. A non‐parametric approach to the change‐point problem. J R Stat Soc Ser C Appl Stat. 28(2):126–135.
  • Picotte JJ, Peterson B, Meier G, Howard SM. 2016. 1984–2010 trends in fire burn severity and area for the conterminous US. Int J Wildland Fire. 25(4):413–420.
  • Platt WJ, Orzell SL, Slocum MG. 2015. Seasonality of fire weather strongly influences fire regimes in south Florida savanna-grassland landscapes. PLoS One. 10(1):e0116952.
  • Rajput P, Sarin MM, Rengarajan R, Singh D. 2011. Atmospheric polycyclic aromatic hydrocarbons (PAHs) from post-harvest biomass burning emissions in the Indo-Gangetic Plain: isomer ratios and temporal trends. Atmos Environ. 45(37):6732–6740.
  • Ram K, Sarin MM. 2011. Day–night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: implications to secondary aerosol formation. Atmos Environ. 45(2):460–468.
  • Raza MH, Abid M, Yan T, Naqvi SA, Akhtar S, Faisal M. 2019. Understanding farmers’ intentions to adopt sustainable crop residue management practices: a structural equation modeling approach. J Clean Prod. 227:613–623.
  • Rengarajan R, Sarin MM, Sudheer AK. 2007. Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high‐altitude sites in North India. J Geophys Res-Atmos. 16:112(D21).
  • Roy C, Ayantika DC, Girach I, Chakrabarty C. 2022. Intense biomass burning over northern India and its impact on air quality, chemistry and climate. In Extremes in atmospheric processes and phenomenon: assessment, impacts and mitigation. Singapore: Springer; p. 169–204
  • Sahu SK, Mangaraj P, Beig G, Samal A, Pradhan C, Dash S, Tyagi B. 2021. Quantifying the high resolution seasonal emission of air pollutants from crop residue burning in India. Environ Pollut. 286:117165.
  • Sawlani R, Agnihotri R, Sharma C, Patra PK, Dimri AP, Ram K, Verma RL. 2019. The severe Delhi SMOG of 2016: a case of delayed crop residue burning, coincident firecracker emissions, and atypical meteorology. Atmos. Pollut. Res. 10(3):868–879.
  • Sembhi H, Wooster M, Zhang T, Sharma S, Singh N, Agarwal S, Boesch H, Gupta S, Misra A, Tripathi SN, et al. 2020. Post-monsoon air quality degradation across Northern India: assessing the impact of policy-related shifts in timing and amount of crop residue burnt. Environ Res Lett. 15(10):104067.
  • Shaik DS, Kant Y, Mitra D, Singh A, Chandola HC, Sateesh M, Babu SS, Chauhan P. 2019. Impact of biomass burning on regional aerosol optical properties: a case study over northern India. J Environ Manage. 244:328–343.
  • Singh R, Yadav DB, Ravisankar N, Yadav A, Singh H. 2020. Crop residue management in rice–wheat cropping system for resource conservation and environmental protection in north-western India. Environ Dev Sustain. 22(5):3871–3896.
  • Steinley D. 2006. K‐means clustering: a half‐century synthesis. Br J Math Stat Psychol. 59(Pt 1):1–34.
  • Steinley D. 2008. Stability analysis in K‐means clustering. Br J Math Stat Psychol. 61(Pt 2):255–273.
  • Streets DG, Yarber KF, Woo JH, Carmichael GR. 2003. Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Global Biogeochem Cycles. 2003:17(4)
  • Vadrevu KP, Csiszar I, Ellicott E, Giglio L, Badarinath KV, Vermote E, Justice C. 2013. Hotspot analysis of vegetation fires and intensity in the Indian region. IEEE J Sel Top Appl Earth Observ Remote Sens. 6(1):224–238.
  • Vadrevu K, Lasko K. 2015. Fire regimes and potential bioenergy loss from agricultural lands in the Indo-Gangetic Plains. J Environ Manage. 148:10–20.
  • Vadrevu KP, Lasko K, Giglio L, Schroeder W, Biswas S, Justice C. 2019. Trends in vegetation fires in south and Southeast Asian countries. Sci Rep. 9(1):1–3.
  • Wilcoxon F. 1945. Individual comparisons by ranking methods. Biom. Bull. 1(6):80–83.
  • Wooster MJ, Roberts G, Perry GL, Kaufman YJ. 2005. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J Geophys Res-Atmos. 2005:110(D24).
  • Zhang X, Kondragunta S, Roy DP. 2014. Interannual variation in biomass burning and fire seasonality derived from geostationary satellite data across the contiguous United States from 1995 to 2011. J Geophys Res Biogeosci. 119(6):1147–1162.
  • Zhang T, Wooster MJ, Xu W. 2017. Approaches for synergistically exploiting VIIRS I-and M-Band data in regional active fire detection and FRP assessment: A demonstration with respect to agricultural residue burning in Eastern China. Remote Sens Environ. 198:407–424.
  • Zhuang Y, Li R, Yang H, Chen D, Chen Z, Gao B, He B. 2018. Understanding temporal and spatial distribution of crop residue burning in China from 2003 to 2017 using MODIS data. Remote Sens. 10(3):390.