1,101
Views
5
CrossRef citations to date
0
Altmetric
Research Article

The influence of sampling on landslide susceptibility mapping using artificial neural networks

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-23 | Received 18 Apr 2022, Accepted 28 Oct 2022, Published online: 17 Nov 2022

References

  • Aghdam IN, Varzandeh MHM, Pradhan B. 2016. Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran). Environ Earth Sci. 75(7):1–20.
  • Baeza C, Lantada N, Moya J. 2010. Influence of sample and terrain unit on landslide susceptibility assessment at La Pobla de Lillet, Eastern Pyrenees, Spain. Environ Earth Sci. 60(1):155–167.
  • Betiollo LM. 2006. Caracterização estrutural, hidrogeológica e hidroquímica dos sistemas aquíferos guarani e serra geral no nordeste do Rio Grande do Sul, Brasil. Dissertação (Mestrado em Geociências) – Instituto de Geociências, Universidade Federal do Rio Grande do Sul, p. 117.
  • Blahut J, Van Westen CJ, Sterlacchini S. 2010. Analysis of landslide inventories for accurate prediction of debris-fow source areas. Geomorphology. 119(1-2):36–51.
  • Bragagnolo L, da Silva RV, Grzybowski JMV. 2020. Artificial neural network ensembles applied to the mapping of landslide susceptibility. Catena. 184:104240.
  • Bui DT, Tuan TA, Klempe H, Pradhan B, Revhaug I. 2016. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression and logistic model tree. Landslides. 13(2):361–378.
  • Cantarino I, Carrion MA, Goerlich F, Ibañez VMA. 2019. ROC analysis-based classification method for landslide susceptibility maps. Landslides. 16(2):265–282.
  • Chen W, Pourghasemi HR, Kornejady A, Zhang N. 2017a. Landslide spatial modeling: introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma. 305:314–327.
  • Chen W, Pourghasemi HR, Panahi M, Kornejady A, Wang J, Xie X, Cao S. 2017b. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques. Geomorphology. 297:69–85.
  • Chen W, Panahi M, Tsangaratos P, Shahabi H, Ilia I, Panahi S, Li S, Jaafari A, Ahmad BB. 2019. Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility. Catena. 172:212–231.
  • Di Napoli M, Carotenuto F, Cevasco A, Confuorto P, Di Martire D, Firpo M, Pepe G, Raso E, Calcaterra D. 2020. Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability. Landslides. 17(8):1897–1914.
  • Dornik A, Drăguţ L, Oguchi T, Hayakawa Y, Micu M. 2022. Influence of sampling design on landslide susceptibility modeling in lithologically heterogeneous areas. Sci Rep. 12(1):2106. |
  • Gameiro S, Quevedo RP, Oliveira GG, Ruiz LFC, Guasselli LA. 2019. Análise e correlação de atributos morfométricos e sua influência nos deslizamentos ocorridos na Bacia do Rio Rolante, RS. In Simpósio Brasileiro de Sensoriamento Remoto, XIX, Santos. Anais... Santos, Vol 17, p. 2880–2883.
  • Gameiro S, Riffel ES, Oliveira GG, Guasselli LA. 2021. Artificial neural networks applied to landslide susceptibility: the effect of sampling areas on model capacity for generalization and extrapolation. Appl Geogr. 137:102598.
  • Görum T. 2019. Landslide recognition and mapping in a mixed forest environment from airborne LiDAR data. Eng Geol. 258:105155.
  • Hartmann LA. 2014. A história natural do Grupo Serra Geral desde o Cretáceo até o Recente. Ciência E Natura. 36(3):173–182.
  • Heckmann T, Gegg K, Gegg A, Becht M. 2014. Sample size matters: investigating the effect of sample size on a logistic regression susceptibility model for debris flow. Nat Hazards Earth Syst Sci. 14(2):259–278.
  • Highland LM, Bobrowsky P. 2008. The landslide handbook - a guide to understanding landslides: Reston, Virginia, U.S. Geological Survey Circular 1325:129.
  • Hong H, Pradhan B, Xu C, Bui DT. 2015. Spatial Prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena. 133:266–281.
  • Hong H, Tsangaratos P, Ilia I, Liu J, Zhu A-X, Chen W. 2018a. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Sci Total Environ. 625:575–588.
  • Hong H, Liu J, Bui DT, Pradhan B, Acharya TD, Pham BT, Zhu A-X, Chen W, Ahmad BB. 2018b. Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). Catena. 163:399–413.
  • Hong H, Miao Y, Liu J, Zhu A-X. 2019a. Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslides susceptibility mapping. Catena. 176:45064.
  • Hong H, Shahabi H, Shirzadi A, Chen W, Chapi K, Ahmad BB, Roodposhti MS, Hesar AY, Tian Y, Bui DT. 2019b. Landslides susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods. Nat Hazards. 96(1):173–212.
  • Jaafari A, Panahi M, Pham BT, Shahabi H, Bui DT, Rezaie F, Lee S. 2019. Meta optimization of an adaptive neuro-fuzzy inference system with grey Wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility. Catena. 175:430–445.
  • Jebur MN, Pradhan B, Tehrany MS. 2014. Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sens Environ. 152:150–165.
  • Jennifer JJ, Saravanan S. 2021. Artificial neural network and sensitivity analysis in the landslide susceptibility mapping of Idukki district, India. Geocarto Int. 37(19):5693–5715.
  • Kalantar B, Pradhan B, Naghibi SA, Motevalli A, Mansor S. 2018. Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomatics Nat Hazards Risk. 9(1):49–69.
  • Kawabata D, Bandibas J. 2009. Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN). Geomorphology. 113(1-2):97–109.
  • Khanna K, Martha TR, Roy P, Kumar KV. 2021. Effect of time and space partitioning strategies of samples on regional landslide susceptibility modelling. Landslides, Technical Note. 18(6):2281–2294.
  • Lucchese LV, Oliveira GG, Pedrollo OC. 2020. Attribute selection using correlations and principal components for artificial neural networks employment for landslide susceptibility assessment. Environ Monit Assess. 192(2):129.
  • Meten M, Prakashbhandary N, Yatabe R. 2015. Effect of landslide factor combinations on the prediction accuracy of landslide susceptibility maps in the Blue Nile Gorge of Central Ethiopia. Geoenviron Disasters. 2(1):1–17.
  • Nami MH, Jaafari A, Fallah M, Nabiuni S. 2018. Spatial prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS. Int J Environ Sci Technol. 15(2):373–384.
  • Nefeslioglu HA, Duman TY, Durmaz S 2008. Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology. 94(3–4):401–418.
  • Novellino A, Cesarano M, Cappelletti P, Di Martire D, Di Napoli M, Ramondini M, Sowter A, Calcaterra D. 2021. Slow-moving landslide risk assessment combining Machine Learning and InSAR techniques. Catena. 203:105317.
  • Oliveira GG, Pedrollo OC, Castro NMR. 2015. Simplifying artificial neural network models of river basin behaviour by an automated procedure for input variable selection. Eng Appl Artif Intell. 40:47–61.
  • Oliveira GG, Ruiz LFC, Guasselli LA, Haetinger C. 2019a. Random Forest and artificial neural networks in landslide susceptibility modeling: a case study of the Fão River Basin, Southern Brazil. Nat Hazards. 99(2):1049–1073.
  • Oliveira GG, Ruiz LFC, Quevedo DM. 2019b. Redes neurais artificiais e geotecnologias para o mapeamento de áreas suscetíveis a inundações. In: Simpósio Brasileiro de Recursos Hídricos, XXIII, 2019 Foz do Iguaçu. Anais XXIII Simpósio Brasileiro de Recursos Hídricos. Porto Alegre: ABRH, 2019. Vol1. p. 1–10.
  • Pandey VK, Sharma MC. 2017. Probabilistic landslide susceptibility mapping along Tipri to Ghuttu highway corridor, Garhwal Himalaya (India). Remote Sens Appl Soc Environ. 8:1–11.
  • Petschko H, Bell R, Brenning A, Glade T. 2012. Landslide susceptibility modeling with generalized additive models–facing the heterogeneity of large regions. Landslides Eng Slopes Protect Soc Improv Underst. 1:769–777.
  • Petschko H, Brenning A, Bell R, Goetz J, Glade T. 2014. Assessing the quality of landslide susceptibility maps – case study Lower Austria. Nat Hazards Earth Syst Sci. 14(1):95–118. 2014.
  • Polykretis C, Ferentinou M, Chalkias C. 2015. A comparative study of landslide susceptibility mapping using landslide susceptibility index and artificial neural networks in the Krios River and Krathis River catchments (northern Peloponnesus, Greece). Bull Eng Geol Environ. 74(1):27–45.
  • Pourghasemi HR, Pradhan B, Gokceoglu C. 2012. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards. 63(2):965–996.
  • Pradhan B, Lee S. 2010. Regional landslide susceptibility analysis using backpropagation neural network model at Cameron Highland, Malaysia. Landslides. 7(1):13–30.
  • Quevedo RP, Guasseli LA, Oliveira GG, Ruiz LFC. 2019. Modelagem de áreas suscetíveis a deslizamentos: avaliação comparativa de técnicas de amostragem, aprendizado de máquina e modelos digitais de elevação. São Paulo, UNESP, Geociências. 38(3):781–795.
  • Regmi AD, Devkot KC, Yoshida K, Pradhan B, Pourghasemi HR, Kumamoto T, Akgun A. 2014. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab J Geosci. 7(2):725–742.
  • Rossato MS. 2011Os climas do Rio Grande do Sul: variabilidade, tendências e tipologia. Tese (Doutorado), Instituto de Geociências, Programa de Pós-Graduação em Geografia da Universidade Federal do Rio Grande do Sul, p. 253.
  • Sachdeva S, Bhatia T, Verma AK. 2020. A novel voting ensemble model for spatial prediction of Landslides using GIS. Int J Remote Sens. 41(3):929–952.
  • Sameen MI, Pradhan B, Lee S. 2020. Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment. Catena. 186:104249.
  • Shirzadi A, Solaimani K, Roshan MH, Kavian A, Chapi K, Shahabi H, Keesstra S, Ahmad BB, Bui DT. 2019. Uncertainties of prediction accuracy in shallow landslide modeling: Sample size and raster resolution. Catena. 178:172–188.
  • Termeh SVR, Kornejady A, Pourghasemi HR, Keesstra S. 2018. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Sci Total Environ. 615:438–451.
  • Valenzuela P, Domínguez-Cuesta MJ, García MAM, Jiménez-Sánchez M. 2017. A spatio-temporal landslide inventory for the NW of Spain: BAPA database. Geomorphology. 293:11–23.
  • Van Den Eeckhaut M, Hervás J, Jaedicke C, Malet J-P, Montanarella L, Nadim F. 2012. Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides. 9(3):357–369.
  • Xiong Y, Zhou Y, Wang F, Wang S, Wang Z, Ji J, Wang J, Zou W, You D, Qin Q. 2022. A novel Intelligente method based on the gaussian heatmap sampling technique and convolutional neural network for landslide susceptibility mapping. Remote Sens. 14(12):2866.
  • Yalcin A. 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena. 72(1):1–12.
  • Yilmaz I. 2009. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat – Turkey). Comput Geosci. 35(6):1125–1138.
  • Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM. 2016. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides. 13(5):839–856.
  • Zhao F, Meng X, Zhang Y, Chen G, Su X, Yue D. 2019. Landslide susceptibility mapping of Karakorum Highway combined with the application of SBAS-InSAR technology. Sensors. 19:2685
  • Zhu A-X, Miao Y, Yang L, Bai S, Liu J, Hong H. 2018. Comparison of the presence-only method and presence-absence method in landslide susceptibility mapping. Catena. 171:222–233.
  • Zhu A-X, Miao Y, Liu J, Bai S, Zeng C, Ma T, Hong H. 2019. A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-drive methods. Catena. 183:104188.
  • Wang Y, Fang Z, Hong H. 2019. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Sci Total Environ. 666:975–993.
  • Wang Y, Feng L, Li S, Ren F, Du Q. 2020. A hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang Province, China. Catena. 188:104425.