769
Views
0
CrossRef citations to date
0
Altmetric
Research Article

DSMFFNet: Depthwise separable multiscale feature fusion network for bridge detection in very high resolution satellite images

, , , &
Pages 1-26 | Received 02 May 2022, Accepted 07 Nov 2022, Published online: 22 Nov 2022

References

  • Bochkovskiy A, Wang C-Y, Liao H-YM. 2020. Yolov4: optimal speed and accuracy of object detection. arXiv Preprint arXiv:2004.10934.
  • Cao Y, Wang Y, Peng J, Zhang L, Xu L, Yan K, Li L. 2020. DML-GANR: deep metric learning with generative adversarial network regularization for high spatial resolution remote sensing image retrieval. IEEE Trans Geosci Remote Sens. 58(12):8888–8904.
  • Chaudhuri D, Samal A. 2008. An automatic bridge detection technique for multispectral images. IEEE Trans Geosci Remote Sens. 46(9):2720–2727.
  • Chen L, Weng T, Xing J, Pan Z, Yuan Z, Xing X, Zhang P. 2020. A new deep learning network for automatic bridge detection from SAR images based on balanced and attention mechanism. Remote Sens. 12(3):441.
  • Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. 2018. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell. 40(4):834–848.
  • Dai J, Li Y, He K, et al. 2016. R-FCN: object detection via region-based fully convolutional networks. Neural Information Processing Systems. p. 379–387.
  • Dalal N, Triggs B. 2005. Histograms of oriented gradients for human detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. p. 886–893.
  • Fan LS, Yang J, Peng YN. 2006. Feature extraction and target detection in river region based on cross entropy. J Syst Eng Electron. 03:339–341.
  • Gaofen Challenge on Automated High-Resolution Earth Observation Image Interpretation 2020. [accessed]. http://en.sw.ch-reos.org.
  • Girshick R, Donahue J, Darrell T. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. IEEE Conference on Computer Vision and Pattern Recognition(CVPR); Jun 23–28; Columbus, OH, USA.
  • Girshick R. 2015. Fast R-CNN. IEEE International Conference on Computer Vision (ICCV); Dec 7–13; Santiago, Chile.
  • He K, Zhang X, Ren S, Sun J. 2015. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell. 37(9):1904–1916.
  • He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, Nevada, Jun 26–Jul 1.
  • Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H. 2017. MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv Preprint arXiv: 1704.04861.
  • Huang R, Pedoeem J, Chen, C. 2018. A real-time object detection algorithm optimized for non-GPU computers. 2018 IEEE International Conference on Big Data (Big Data); Dec 10–13; Seattle, WA.
  • Jiang YM, Liu W, Lei L. 2006. Fusion model for bridge automatic detection in multi-source remote sensing imagery. J Electron Inf Technol. 10:1794–1797.
  • Lin TY, Doll’ar P, Girshick RB, et al. 2017. Feature pyramid networks for object detection. CVPR. 1(2):4.
  • Lin TY, Goyal P, Girshick R, He K, Dollár P. 2017. Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell. 42(2):318–327.
  • Liu S, Di H, Wang Y. 2017. Receptive field block net for accurate and fast object detection. Lect Notes Comput Sci. 11215:404–419.
  • Liu W, Anguelov D, Erhan, D, Ssd. 2016. Single shot multibox detector. European Conference on Computer Vision; (ECCV); Oct 8–16; Amsterdam, Netherlands.
  • Liu Y. 2020. Dense multiscale feature fusion pyramid networks for object detection in UAV-captured images. arXiv Preprint arXiv: 2012.10643.
  • Lowe DG. 2004. Distinctive image features from scale-invariant key points. Int J Comput Vis. 60(2):91–110.
  • Luo W, Li Y, Urtasun R, Zemel R. 2017. Understanding the effective receptive field in deep convolutional neural networks. 30th Conference on Neural Information Processing Systems (NIPS); Dec 4–9; Barcelona, Spain.
  • Misra D. 2019. Mish: a self regularized non-monotonic neural activation function. arXiv Preprint arXiv: 1908.08681.
  • Papageorgiou CP, Oren M, Poggio T. 1998. A general framework for object detection. The 6th IEEE International Conference on Computer Vision; Bombay, India.p. 555–562.
  • Qiu ML, Huang L, Tang BH. 2022. ASFF-YOLOv5: multielement detection method for road traffic in UAV images based on multiscale feature fusion. Remote Sens. 14(14):3498.
  • Redmon J, Divvala S, Girshick R, et al. 2015. You only look once: unified, real-time object detectiono. Proceedings of CVPR 2015. p. 779–788.
  • Redmon J, Farhadi A. 2017. YOLO9000: better, faster, stronger. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Jul 21–26; Honolulu, HI, USA.
  • Redmon J, Farhadi A. 2018. YOLOv3: an incremental improvement. arXiv Preprint arXiv 1804.02767.
  • Redmon J, Farhadi A. 2018. YOLOv3: an incremental improvement. Computer Science – Computer Vision and Pattern Recognition, arXiv Preprint arXiv: 1804.02767.
  • Ren S, He K, Girshick R, Sun J. 2017. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell. 39(6):1137–1149.
  • Ioffe S, Szegedy C. 2015. Batch normalization accelerating deep network training by reducing internal covariate shift. [accessed] https://arxiv.org/abs/1502.03167.
  • Sermanet P, Eigen D, Zhang X, et al. 2013. OverFeat: integrated recognition, localization and detection using convolutional networks. IEICE Trans Fundam Electron Commun Comput Sci. arXiv Preprint arXiv: 1312.6229.
  • Shi C, Zhang W, Duan C, Chen H. 2021. A pooling-based feature pyramid network for salient object detection. Image Vis Comput. 107(9):104099.
  • Sithole G, Vosselman G. 2006. Bridge detection in airborne laser scanner data. ISPRS J Photogram Remote Sens. 61(1):33–46.
  • Sun Y, Huang L, Zhao J, Change J, Chen P, Cheng F. 2022. High spatial resolution automatic detection of bridges with high spatial resolution remote sensing images based on random erasure and YOLOv4. Remote Sens Nat Resour. 34(02):97–104. (Chinese)
  • Szegedy C, Ioffe S, Vanhoucke V, Alemi A. 2016. Inception-v4, Inception-ResNet and the impact of residual connections on learning. 31st AAAI Conference on Artificial Intelligence; Feb 4–9; San Francisco, CA
  • Szegedy C, Wei L, Jia Y. 2015. Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Jun 9–12; Boston, MA.
  • Takahashi N, Mitsufuji Y. 2020. Densely connected multidilated convolutional networks for dense prediction tasks. arXiv Preprint arXiv:2011.11844.
  • Tan M, Pang R, Le QV. 2020. EfficientDet: scalable and efficient object detection. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); Jun 13–19; Sattle, WA, USA.
  • Tarhan C, Akar GB. 2018. Convolutional neural networks analyzed via inverse problem theory and sparse representations. IET Signal Proc. 13:219–223.
  • Tong K, Wu Y, Zhou F. 2020. Recent advances in small object detection based on deep learning: a review. Image Vis Comput. 97:103910.
  • Viola P, Jones M. 2004. Robust real-time face detection. Int J Comput Vis. 57(2):137–154.
  • Wang CY, Liao H, Wu YH. 2020. CSPNet: a new backbone that can enhance learning capability of CNN. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW); Jun 13–19; Seattle, USA.
  • Xu D, Wu Y. 2021. FE-YOLO: a feature enhancement network for remote sensing target detection. Remote Sens. 13(7):1311.
  • Yao X, Feng X, Han J, Cheng G, Guo L. 2021. Automatic weakly supervised object detection from high spatial resolution remote sensing images via dynamic curriculum learning. IEEE Trans Geosci Remote Sens. 59(1):675–685.
  • Yu J, Zhou G, Zhou S, Yin J. 2021. A lightweight fully convolutional neural network for SAR automatic target recognition. Remote Sens. 13(15):3029.
  • Yu X, Long W, Li Y, Shi X, Gao L. 2021. Improving the performance of convolutional neural networks by fusing low-level features with different scales in the preceding stage. IEEE Access. 9:70273–70285.
  • Zhang X, Cao S, Chen C. 2020. Scale-aware hierarchical detection network for pedestrian detection. IEEE Access. 8:94429–94439.
  • Zhang Y, Yuan Y, Feng Y, Lu X. 2019. Hierarchical and robust convolutional neural network for very high-resolution remote sensing object detection. IEEE Trans Geosci Remote Sens. 57(8):5535–5548.
  • Zheng H, Wu Y, Deng L, Hu Y, Li G. 2020. Going deeper with directly-trained larger spiking neural networks. arXiv Preprint arXiv: 2011.05280.
  • Zhou X, Wang D, Krhenbühl P. 2019. Objects as points. arXiv Preprint arXiv:1904.07850.
  • Zhou X. 2020. Research on remote sensing image target detection Algorithm based on deep learning [MA dissertation]. Changsha University of Science and Technology. (Chinese).
  • Zhu Y, Mu J, Pu H, Shu B. 2018. FRFB: integrate receptive field block into feature fusion net for single shot multibox detector. International Conference on Semantics Knowledge and Grids; Sep 12–14; Guangzhou, China. p. 173–180.
  • Zou Z, Shi Z, Guo Y, Ye J. 2019. Object detection in 20 years: a survey. arXiv Preprint arXiv: 1905.05055v2.