1,038
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Testing Sentinel-2 spectral configurations for estimating relevant crop biophysical and biochemical parameters for precision agriculture using tree-based and kernel-based algorithms

ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1-25 | Received 27 Jun 2022, Accepted 07 Nov 2022, Published online: 21 Nov 2022

References

  • Amin E, Verrelst J, Rivera-Caicedo JP, Pipia L, Ruiz-Verdú A, Moreno J. 2021. Prototyping Sentinel-2 green LAI and brown LAI products for cropland monitoring. Remote Sens Environ. 255:112168.
  • Ayumi V. 2017. Pose-based human action recognition with extreme gradient boosting. Proceedings - 14th IEEE Student Conference on Research and Development: Advancing Technology for Humanity, SCOReD 2016. IEEE.
  • Bahrami H, Homayouni S, Safari A, Mirzaei S, Mahdianpari M, Reisi-Gahrouei O. 2021. Deep learning-based estimation of crop biophysical parameters using multi-source and multi-temporal remote sensing observations. Agronomy. 11(7):1363.
  • Beltran JC, Valdez P, Naval P. 2019. Predicting protein-protein interactions based on biological information using extreme gradient boosting. 2019 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).
  • Blackburn GA. 1998. Quantifying chlorophylls and caroteniods at leaf and canopy scales: an evaluation of some hyperspectral approaches. Remote Sens Environ. 66(3):273–285.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32.
  • Breiman L, Friedman JH, Olshen RA, Stone CJ. 1984. Classification and regression trees. New York: Wadsworth International Group.
  • Brown ME, Pinzón JE, Didan K, Morisette JT, Tucker CJ. 2006. Evaluation of the consistency of long-term NDVI time series derived from AVHRR, SPOT-vegetation, SeaWiFS, MODIS, and Landsat ETM + sensors. IEEE Trans Geosci Remote Sens. 44(7):1787–1793.
  • Camacho F, Fuster B, Li W, Weiss M, Ganguly S, Lacaze R, Baret F. 2021. Crop specific algorithms trained over ground measurements provide the best performance for GAI and fAPAR estimates from Landsat-8 observations. Remote Sens Environ. 260:112453.
  • Campos-Taberner M, García-Haro FJ, Camps-Valls G, Grau-Muedra G, Nutini F, Crema A, Boschetti M. 2016. Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring. Remote Sens Environ. 187:102–118.
  • Camps-Vails G, Gómez-Chova L, Muñoz-Mari J, Vila-Francés J, Amoros J, del Valle-Tascon S, Calpe-Maravilla J. 2009. Biophysical parameter estimation with adaptive Gaussian processes. 2009 IEEE International Geoscience and Remote Sensing Symposium.
  • Camps-Valls G, Gómez-Chova L, Muñoz-Marí J, Lázaro-Gredilla M, Verrelst J. 2013. simpleR: a simple educational Matlab toolbox for statistical regression. V2. https://www.uv.es/gcamps/software.html (accessed 10 December 2018).
  • Camps-Valls G, Verrelst J, Munoz-Mari J, Laparra V, Mateo-Jimenez F, Gomez-Dans J. 2016. A survey on Gaussian processes for earth-observation data analysis: a comprehensive investigation. IEEE Geosci Remote Sens Mag. 4:58–78.
  • Chemura A, Mutanga O, Odindi J. 2017. Empirical modeling of leaf chlorophyll content in coffee (Coffea arabica) plantations with Sentinel-2 MSI data: effects of spectral settings, spatial resolution, and crop canopy cover. IEEE J Sel Top Appl Earth Observ Remote Sens. 10(12):5541–5550.
  • Chen T, Guestrin C. 2016. Xgboost: a scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
  • Chrysafis I, Korakis G, Kyriazopoulos AP, Mallinis G. 2020. Retrieval of leaf area index using Sentinel-2 imagery in a mixed Mediterranean forest area. IJGI. 9(11):622.
  • Clevers J, Kooistra L, Van Den Brande M. 2017. Using Sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop. Remote Sens. 9(5):405.
  • Collins W. 1978. Remote sensing of crop type and maturity. Photogramm Eng Remote Sens. 44(1):43–55.
  • Croft H, Arabian J, Chen JM, Shang J, Liu J. 2020. Mapping within-field leaf chlorophyll content in agricultural crops for nitrogen management using Landsat-8 imagery. Precision Agric. 21(4):856–880.
  • CropEstimatesConsortium. 2017. Field Crop Boundary data layer (Free State province). Department of Agriculture, Forestry and Fisheries, Pretoria, South Africa.
  • Curran PJ. 2001. Imaging spectrometry for ecological applications. Int J Appl Earth Obs Geoinf. 3(4):305–312.
  • da Silva Jr CA, Teodoro LPR, Teodoro PE, Baio FHR, Pantaleão AdA, Capristo-Silva GF, Facco CU, Oliveira-Júnior JFd, Shiratsuchi LS, Skripachev V, et al. 2020. Simulating multispectral MSI bandsets (Sentinel-2) from hyperspectral observations via spectroradiometer for identifying soybean cultivars. Remote Sens Appl: Soc Environ. 19:100328.
  • Delegido J, Verrelst J, Alonso L, Moreno J. 2011. Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors (Basel). 11(7):7063–7081.
  • Delegido J, Verrelst J, Meza CM, Rivera JP, Alonso L, Moreno J. 2013. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur J Agron. 46:42–52.
  • Delegido J, Verrelst J, Rivera JP, Ruiz-Verdú A, José Moreno J. 2015. Brown and green LAI mapping through spectral indices. Int J Appl Earth Obs Geoinf. 35:350–358.
  • Delloye C, Weiss M, Defourny P. 2018. Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems. Remote Sens Environ. 216:245–261.
  • Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P, et al. 2012. Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote Sens Environ. 120:25–36.
  • Du P, Samat A, Waske B, Liu S, Li Z. 2015. Random forest and rotation forest for fully polarized SAR image classification using polarimetric and spatial features. ISP RS J Photogramm Remote Sens. 105:38–53.
  • Estévez J, Salinero-Delgado M, Berger K, Pipia L, Rivera-Caicedo JP, Wocher M, Reyes-Muñoz P, Tagliabue G, Boschetti M, Verrelst J. 2022. Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data. Remote Sens Environ. 273:112958.
  • Estévez J, Vicent J, Rivera-Caicedo JP, Morcillo-Pallarés P, Vuolo F, Sabater N, Camps-Valls G, Moreno J, Verrelst J. 2020. Gaussian processes retrieval of LAI from Sentinel-2 top-of-atmosphere radiance data. ISPRS J Photogramm Remote Sens. 167:289–304.
  • Fawagreh K, Gaber MM, Elyan E. 2014. Random forests: from early developments to recent advancements. Syst Sci Control Eng. 2(1):602–609.
  • Friedman JH. 2001. Greedy function approximation: a gradient boosting machine. Ann Stat. 29(5):1189–1232.
  • Gao F, Anderson MC, Zhang X, Yang Z, Alfieri JG, Kustas WP, Mueller R, Johnson DM, Prueger JH. 2017. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sens Environ. 188:9–25.
  • GCOS. 2011. Systematic observation requirements for satellite-based products for climate. In Supplemental details to the satellite-based component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC: 2011 update, 2011 update ed., Vol. GCOS - No. 154, p. 138. Geneva, Switzerland: World Meteorological Organization (WMO).
  • Gislason PO, Benediktsson JA, Sveinsson JR. 2006. Random Forests for land cover classification. Pattern Recog Lett. 27(4):294–300.
  • Gitelson AA, Peng Y, Masek JG, Rundquist DC, Verma S, Suyker A, Baker JM, Hatfield JL, Meyers T. 2012. Remote estimation of crop gross primary production with Landsat data. Remote Sens Environ. 121:404–414.
  • Godfray HCJ, Garnett T. 2014. Food security and sustainable intensification. Philos Trans R Soc Lond B Biol Sci. 369(1639):20120273.
  • Guan H, Li J, Chapman M, Deng F, Ji Z, Yang X. 2013. Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests. Int J Remote Sens. 34(14):5166–5186.
  • Gupta A, Gusain K, Popli B. 2016. Verifying the value and veracity of extreme gradient boosted decision trees on a variety of datasets. 2016 11th International Conference on Industrial and Information Systems (ICIIS), pp. 457–462.
  • Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada PJ, Asner GP, François C, Ustin SL. 2009. PROSPECT + SAIL models: a review of use for vegetation characterization. Remote Sens Environ. 113: S56–S66.
  • Jensen JR. 1983. Biophysical remote sensing. Ann Assoc Am Geogr. 73(1):111–132.
  • Jia F, Liu G, Liu D, Zhang Y, Fan W, Xing X. 2013. Comparison of different methods for estimating nitrogen concentration in flue-cured tobacco leaves based on hyperspectral reflectance. Field Crops Res. 150:108–114.
  • Kganyago M. 2021. Using sentinel-2 observations to assess the consequences of the COVID-19 lockdown on winter cropping in Bothaville and Harrismith, South Africa. Remote Sens Lett. 12(9):827–837.
  • Kganyago M, Mhangara P, Adjorlolo C. 2021. Estimating crop biophysical parameters using machine learning algorithms and Sentinel-2 imagery. Remote Sens. 13(21):4314–4321.
  • Kganyago M, Mhangara P, Alexandridis T, Laneve G, Ovakoglou G, Mashiyi N. 2020. Validation of sentinel-2 leaf area index (LAI) product derived from SNAP toolbox and its comparison with global LAI products in an African semi-arid agricultural landscape. Remote Sens Lett. 11(10):883–892.
  • Kobayashi N, Tani H, Wang X, Sonobe R. 2020. Crop classification using spectral indices derived from Sentinel-2A imagery. J Inf Telecommun. 4(1):67–90.
  • Lanaras C, Bioucas-Dias J, Baltsavias E, Schindler K. 2017. Super-resolution of multispectral multiresolution images from a single sensor. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.
  • Lanaras C, Bioucas-Dias J, Galliani S, Baltsavias E, Schindler K. 2018. Super-resolution of Sentinel-2 images: learning a globally applicable deep neural network. ISPRS J Photogramm Remote Sens. 146:305–319.
  • Lawley V, Lewis M, Clarke K, Ostendorf B. 2016. Site-based and remote sensing methods for monitoring indicators of vegetation condition: an Australian review. Ecol Indic. 60:1273–1283.
  • Loggenberg K, Strever A, Greyling B, Poona N. 2018. Modelling water stress in a Shiraz vineyard using hyperspectral imaging and machine learning. Remote Sens. 10(2):1–14.
  • Louis J, Debaecker V, Pflug B, Main-Knorn M, Bieniarz J, Mueller-Wilm U, … Gascon F. 2016. Sentinel-2 Sen2Cor: l 2A processor for users. Proceedings Living Planet Symposium 2016.
  • Ma Y, Liu S, Song L, Xu Z, Liu Y, Xu T, Zhu Z. 2018. Estimation of daily evapotranspiration and irrigation water efficiency at a Landsat-like scale for an arid irrigation area using multi-source remote sensing data. Remote Sens Environ. 216:715–734.
  • Mango N, Siziba S, Makate C. 2017. The impact of adoption of conservation agriculture on smallholder farmers’ food security in semi-arid zones of southern Africa. Agric Food Secur. 6(1):1–8.
  • Mansaray LR, Kanu AS, Yang L, Huang J. 2020. Dynamic modelling of rice leaf area index with quad-source optical imagery and machine learning regression models. Geocarto Int. 37(3):828–840.
  • Maxwell E. 1976. Sensor design for monitoring vegetation canopies. Photogramm Eng Remote Sens. 42(11):1399–1410.
  • Mueller-Wilm U. 2016. Sentinel-2 MSI—Level-2A prototype processor installation and user manual, 2016. Last accessed, 5.
  • Mulla DJ. 2013. Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst Eng. 114(4):358–371.
  • Mutanga O, Skidmore AK. 2007. Red edge shift and biochemical content in grass canopies. ISPRS J Photogramm Remote Sens. 62(1):34–42.
  • Myneni R, Williams D. 1994. On the relationship between FAPAR and NDVI. Remote Sens Environ. 49(3):200–211.
  • Myneni RB, Hoffman S, Knyazikhin Y, Privette JL, Glassy J, Tian Y, Wang Y, Song X, Zhang Y, Smith GR, et al. 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens Environ. 83(1–2):214–231.
  • Ndlovu HS, Odindi J, Sibanda M, Mutanga O, Clulow A, Chimonyo VGP, Mabhaudhi T. 2021. A comparative estimation of maize leaf water content using machine learning techniques and unmanned aerial vehicle (UAV)-based proximal and remotely sensed data. Remote Sensing. 13(20):4091. https://www.mdpi.com/2072-4292/13/20/4091.
  • Pal M. 2005. Random forest classifier for remote sensing classification. Int J Remote Sens. 26(1):217–222.
  • Parry C, Blonquist JM, Jr, Bugbee B. 2014. In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship. Plant Cell Environ. 37(11):2508–2520.
  • Pathy A, Meher S, Balasubramanian P. 2020. Predicting algal biochar yield using eXtreme Gradient Boosting (XGB) algorithm of machine learning methods. Algal Res. 50:102006.
  • Peng Y, Gitelson AA. 2011. Application of chlorophyll-related vegetation indices for remote estimation of maize productivity. Agric For Meteorol. 151(9):1267–1276.
  • Pinty B, Verstraete M. 1992. GEMI: a non-linear index to monitor global vegetation from satellites. Vegetatio. 101(1):15–20.
  • Pipia L, Amin E, Belda S, Salinero-Delgado M, Verrelst J. 2021. Green lai mapping and cloud gap-filling using Gaussian process regression in google earth engine. Remote Sens (Basel). 13(3):403.
  • Rasmussen CE. 2003. Gaussian processes in machine learning. In: Bousquet O, von Luxburg U, Rätsch G, editors. Advanced Lectures on on machine learning. Lecture Notes in Computer Science, Vol. 3176. Berlin, Heidelberg: Springer; p. 63–71.
  • Richter K, Hank TB, Mauser W, Atzberger C. 2012. Derivation of biophysical variables from Earth observation data: validation and statistical measures. J Appl Remote Sens. 6(1):063557.
  • Rivera-Caicedo JP, Verrelst J, Muñoz-Marí J, Camps-Valls G, Moreno J. 2017. Hyperspectral dimensionality reduction for biophysical variable statistical retrieval. ISPRS J Photogramm Remote Sens. 132:88–101.
  • Rivera CJP, Verrelst J, Muñoz-Marí J, Moreno J, Camps-Valls G. 2014. Toward a semiautomatic machine learning retrieval of biophysical parameters. IEEE J Sel Top Appl Earth Obs Remote Sens. 7(4):1249–1259.
  • Rodriguez-Galiano VF, Ghimire B, Rogan J, Chica-Olmo M, Rigol-Sanchez JP. 2012. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J Photogramm Remote Sens. 67:93–104.
  • Segarra J, Buchaillot ML, Araus JL, Kefauver SC. 2020. Remote sensing for precision agriculture: sentinel-2 improved features and applications. Agronomy. 10(5):641.
  • Shah SH, Angel Y, Houborg R, Ali S, McCabe MF. 2019. A random forest machine learning approach for the retrieval of leaf chlorophyll content in wheat. Remote Sens. 11(8):920.
  • Snee RD. 1977. Validation of regression models: methods and examples. Technometrics. 19(4):415–428.
  • Tucker CJ. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ. 8(2):127–150.
  • Verrelst J, Alonso L, Camps-Valls G, Delegido J, Moreno J. 2012a. Retrieval of vegetation biophysical parameters using Gaussian process techniques. IEEE Trans Geosci Remote Sens. 50(5):1832–1843.
  • Verrelst J, Muñoz J, Alonso L, Delegido J, Rivera JP, Camps-Valls G, Moreno J. 2012b. Machine learning regression algorithms for biophysical parameter retrieval: opportunities for Sentinel-2 and-3. Remote Sens Environ. 118:127–139.
  • Verrelst J, Rivera JP, Gitelson A, Delegido J, Moreno J, Camps-Valls G. 2016. Spectral band selection for vegetation properties retrieval using Gaussian processes regression. Int J Appl Earth Obs Geoinf. 52:554–567.
  • Verrelst J, Rivera JP, Moreno J, Camps-Valls G. 2013. Gaussian processes uncertainty estimates in experimental Sentinel-2 LAI and leaf chlorophyll content retrieval. ISPRS J Photogramm Remote Sens. 86:157–167.
  • Verrelst J, Rivera JP, Veroustraete F, Muñoz-Marí J, Clevers JG, Camps-Valls G, Moreno J. 2015. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods – A comparison. ISPRS J Photogramm Remote Sens. 108:260–272.
  • Vincini M, Calegari F, Casa R. 2016. Sensitivity of leaf chlorophyll empirical estimators obtained at Sentinel-2 spectral resolution for different canopy structures. Precision Agric. 17(3):313–331.
  • Walker RJ. 2016. Population growth and its implications for global security. Am J Econ Sociol. 75(4):980–1004.
  • Wang L, Chang Q, Yang J, Zhang X, Li F. 2018. Estimation of paddy rice leaf area index using machine learning methods based on hyperspectral data from multi-year experiments. PLoS One. 13(12):e0207624.
  • Wen P, Shi Z, Li A, Ning F, Zhang Y, Wang R, Li J. 2020. Estimation of the vertically integrated leaf nitrogen content in maize using canopy hyperspectral red edge parameters. Precis Agric. 22:984–1005.
  • Williams CK, Rasmussen CE. 2006. Gaussian processes for machine learning. Vol. 2. Cambridge, MA: MIT Press.
  • Xie Q, Dash J, Huete A, Jiang A, Yin G, Ding Y, Peng D, Hall CC, Brown L, Shi Y, et al. 2019. Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery. Int J Appl Earth Obs Geoinf. 80:187–195.
  • Yi Q, Wang F, Bao A, Jiapaer G. 2014. Leaf and canopy water content estimation in cotton using hyperspectral indices and radiative transfer models. Int J Appl Earth Obs Geoinf. 33(1):67–75.
  • Yu FH, Xu TY, Du W, Ma H, Zhang GS, Chen CL. 2017. Radiative transfer models (RTMs) for field phenotyping inversion of rice based on UAV hyperspectral remote sensing. Int J Agric Biol Eng. 10(4):150–157.
  • Zhang M, Su W, Fu Y, Zhu D, Xue J-H, Huang J, Wang W, Wu J, Yao C. 2019. Super-resolution enhancement of Sentinel-2 image for retrieving LAI and chlorophyll content of summer corn. Eur J Agron. 111:125938.
  • Zhang Y, Xia C, Zhang X, Cheng X, Feng G, Wang Y, Gao Q. 2021. Estimating the maize biomass by crop height and narrowband vegetation indices derived from UAV-based hyperspectral images. Ecol Indic. 129:107985.
  • Zhao C, Wang Z, Wang J, Huang W, Guo T. 2011. Early detection of canopy nitrogen deficiency in winter wheat (Triticum aestivum L.) based on hyperspectral measurement of canopy chlorophyll status. N Z J Crop Hortic Sci. 39(4):251–262.
  • Zhu Z, Bi J, Pan Y, Ganguly S, Anav A, Xu L, Samanta A, Piao S, Nemani R, Myneni R. 2013. Global data sets of vegetation leaf area index (LAI) 3g and fraction of photosynthetically active radiation (FPAR) 3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens. 5(2):927–948.