1,489
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Urban surface water bodies mapping using the automatic k-means based approach and sentinel-2 imagery

ORCID Icon & ORCID Icon
Article: 2148757 | Received 17 May 2022, Accepted 13 Nov 2022, Published online: 16 Dec 2022

References

  • Acharya T, Subedi A, Lee D. 2018. Evaluation of water indices for surface water extraction in a Landsat 8 scene of Nepal. Sensors. 18(8):2580.
  • Agresti A, Kateri M. 2011. Categorical data analysis BT. In: lovric, M., editor. International Encyclopedia of Statistical Science. Berlin Heidelberg: Springer; p. 206–208.
  • Akobeng AK. 2007. Understanding diagnostic tests 1: sensitivity, specificity and predictive values. Acta Paediatr. 96(3):338–341.
  • Allen GH, Pavelsky TM. 2015. Patterns of river width and surface area revealed by the satellite-derived North American River Width data set. Geophys Res Lett. 42(2):395–402.
  • Arnfield AJ. 2003. Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol. 23(1):1–26.
  • Bangira T, Alfieri SM, Menenti M, Van Niekerk A. 2019. Comparing thresholding with machine learning classifiers for mapping complex water. Remote Sens. 11(11):1351.
  • Balázs B, Bíró T, Dyke G, Singh SK, Szabó S. 2018. Extracting water-related features using reflectance data and principal component analysis of Landsat images. Hydrol Sci J. 63(2):269–284.
  • Baskan O, Dengiz O, Demirag İT. 2017. The land productivity dynamics trend as a tool for land degradation assessment in a dryland ecosystem. Environ Monit Assess. 189(5):1–21.
  • Chatufale AP, Rege PP, Bhatt A. 2022. Extraction of waterbody using object-based image analysis and XGBoost. Advanced Machine Intelligence and Signal Processing. Singapore: Springer; p. 341–350.
  • Congalton R, Green K. 2002. Assessing the accuracy of remotely sensed data: principles and practices.
  • Downing JA, Cole JJ, Duarte CM, Middelburg JJ, Melack JM, Prairie YT, Kortelainen P, Striegl RG, McDowell WH, Tranvik LJ. 2012. Global abundance and size distribution of streams and rivers. IW. 2(4):229–236.
  • Du Y, Zhang Y, Ling F, Wang Q, Li W, Li X. 2016. Water bodies’ mapping from sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sens. 8(4):354.
  • Du Z, Li W, Zhou D, Tian L, Ling F, Wang H, Gui Y, Sun B. 2014. Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote Sens Lett. 5(7):672–681.
  • ESA. 2015. Sentinel-2 user handbook. Paris, France: European Space Agency (ESA).
  • Feyisa GL, Meilby H, Fensholt R, Proud SR. 2014. Automated water extraction index: a new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 140:23–35.
  • Gao BC. 1996. NDWI – a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ. 58(3):257–266.
  • Gašparović M, Jogun T. 2018. The effect of fusing Sentinel-2 bands on land-cover classification. Int J Remote Sens. 39(3):822–841.
  • Gašparović M, Zrinjski M, Gudelj M. 2019. Automatic cost-effective method for land cover classification (ALCC). Comput Environ Urban Syst. 76:1–10.
  • Gober P, Kirkwood CW. 2010. Vulnerability assessment of climate-induced water shortage in Phoenix. Proc Natl Acad Sci USA. 107(50):21295–21299.
  • Goutte C, Gaussier E. 2005. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. Lect Notes Comput Sci. 3408:345–359.
  • Golfam P, Ashofteh PS, Loáiciga HA. 2021. Modeling adaptation policies to increase the synergies of the water-climate-agriculture nexus under climate change. Environ Dev. 37:100612.
  • Ghosh S, Das A. 2018. Modelling urban cooling island impact of green space and water bodies on surface urban heat island in a continuously developing urban area. Model Earth Syst Environ. 4(2):501–515.
  • Gudelj M, Gašparović M, Zrinjsk M. 2018. Accuracy analysis of the inland waters detection. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. International Multidisciplinary Scientific Geoconference; p. 203–210.
  • Guo Z, Shi Y, Huang F, Fan X, Huang J. 2021. Landslide susceptibility zonation method based on C5. 0 decision tree and K-means cluster algorithms to improve the efficiency of risk management. Geosci Front. 12(6):101249.
  • Hartigan JA, Wong MA. 1979. Algorithm AS 136: a k-means clustering algorithm. J Royal Statist Soc. Series c (Applied Statistics). 28(1):100–108.
  • Hui F, Xu B, Huang H, Yu Q, Gong P. 2008. Modelling spatial‐temporal change of Poyang Lake using multitemporal Landsat imagery. Int. J. Remote Sens. 29(20):5767–5784.
  • Ichinose T, Shimodozono K, Hanaki K. 1999. Impact of anthropogenic heat on urban climate in Tokyo. Atmos Environ Pergamon. 33(24–25):3897–3909.
  • Jain AK. 2010. Data clustering: 50 years beyond K-means. Pattern Recognit Lett. 31(8):651–666.
  • Ji L, Geng X, Sun K, Zhao Y, Gong P. 2015. Target detection method for water mapping using Landsat 8 OLI/TIRS imagery. Water. 7(12):794–817.
  • Jiang Z, Huete AR, Didan K, Miura T. 2008. Development of a two-band enhanced vegetation index without a blue band. Remote Sens Environ. 112(10):3833–3845.
  • Krauze K, Wagner I. 2019. From classical water-ecosystem theories to nature-based solutions—contextualizing nature-based solutions for sustainable city. Sci Total Environ. 655:697–706.
  • Kuhn M. 2019. Package ‘caret’. Classification and regression training, R Foundation for statistical computing. The R Journal. 223(7):1–224. http://free-cd.stat.unipd.it/web/packages/caret/caret.pdf
  • Kusak L, Unel FB, Alptekin A, Celik MO, Yakar M. 2021. Apriori association rule and K-means clustering algorithms for interpretation of pre-event landslide areas and landslide inventory mapping. Open Geosci. 13(1):1226–1244.
  • Kutser T, Hedley J, Giardino C, Roelfsema C, Brando VE. 2020. Remote sensing of shallow waters – a 50 year retrospective and future directions. Remote Sens Environ. 240:111619.
  • Larson K, White D, Gober P, Wutich A. 2015. Decision-making under uncertainty for water sustainability and urban climate change adaptation. Sustainability. 7(11):14761–14784.
  • Leichtle T, Geiß C, Wurm M, Lakes T, Taubenböck H. 2017. Unsupervised change detection in VHR remote sensing imagery – an object-based clustering approach in a dynamic urban environment. Int J Appl Earth Obs Geoinf. 54:15–27.
  • Li Y, Martinis S, Plank S, Ludwig R. 2018. An automatic change detection approach for rapid flood mapping in Sentinel-1 SAR data. Int J Appl Earth Obs Geoinf. 73:123–135.
  • Li H, Wang C, Zhong C, Su A, Xiong C, Wang J, Liu J. 2017a. Mapping urban bare land automatically from Landsat imagery with a simple index. Remote Sens. 9(3):249.
  • Li F, Liu X, Zhang X, Zhao D, Liu H, Zhou C, Wang R. 2017b. Urban ecological infrastructure: an integrated network for ecosystem services and sustainable urban systems. J Clean Prod. 163: S12–S18.
  • Li W, Qin Y, Sun Y, Huang H, Ling F, Tian L, Ding Y. 2016a. Estimating the relationship between dam water level and surface water area for the Danjiangkou Reservoir using Landsat remote sensing images. Remote Sens Lett. 7(2):121–130.
  • Li Y, Tao C, Tan Y, Shang K, Tian J. 2016b. Unsupervised multilayer feature learning for satellite image scene classification. IEEE Geosci Remote Sens Lett. 13(2):157–161.
  • Li W, Du Z, Ling F, Zhou D, Wang H, Gui Y, Sun B, Zhang X. 2013a. A comparison of land surface water mapping using the normalized difference water index from TM, ETM + and ALI. Remote Sens. 5(11):5530–5549.
  • Li P, Jiang L, Feng Z. 2013b. Cross-comparison of vegetation indices derived from Landsat-7 enhanced thematic mapper plus (ETM+) and Landsat-8 operational land imager (OLI) sensors. Remote Sens. 6(1):310–329.
  • Liu Q, Huang C, Shi Z, Zhang S. 2020. Probabilistic river water mapping from Landsat-8 using the support vector machine method. Remote Sens. 12(9):1374.
  • Lu D, Weng Q. 2007. A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens. 28(5):823–870.
  • McFeeters SK. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens. 17(7):1425–1432.
  • Menarguez MA. 2015. Global water body mapping from 1984 to 2015 using global high resolution multispectral satellite imagery. Norman, USA: University of Oklahoma.
  • Myint SW, Gober P, Brazel A, Grossman-Clarke S, Weng Q. 2011. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 115(5):1145–1161.
  • Nakayama T, Fujita T. 2010. Cooling effect of water-holding pavements made of new materials on water and heat budgets in urban areas. Landsc Urban Plan. 96(2):57–67.
  • Nakayama T, Hashimoto S. 2011. Analysis of the ability of water resources to reduce the urban heat island in the Tokyo megalopolis. Environ Pollut. 159(8–9):2164–2173.
  • Nwakaire CM, Onn CC, Yap SP, Yuen CW, Onodagu PD. 2020. Urban heat island studies with emphasis on urban pavements: a review. Sustain Cities Soc. 63:102476.
  • Qian Y, Zhou W, Yan J, Li W, Han L. 2014. Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sens. 7(1):153–168.
  • Pekel JF, Cottam A, Gorelick N, Belward AS. 2016. High-resolution mapping of global surface water and its long-term changes. Nature. 540(7633):418–422.
  • Rawat JS, Kumar M. 2015. Monitoring land use/cover change using remote sensing and GIS techniques: a case study of Hawalbagh block, district Almora, Uttarakhand, India. Egypt J Remote Sens Sp Sci. 18(1):77–84.
  • Rosinger AY, Brewis A, Wutich A, Jepson W, Staddon C, Stoler J, Young SL. 2020. Water borrowing is consistently practiced globally and is associated with water-related system failures across diverse environments. Glob Environ Change. 64:102148.
  • R Core Team. 2017. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.. https://cran.microsoft.com/snapshot/2014-09-08/web/packages/dplR/vignettes/xdate-dplR.pdf
  • Ren Z, Sun L, Zhai Q. 2020. Improved k-means and spectral matching for hyperspectral mineral mapping. Int J Appl Earth Obs Geoinf. 91:102154.
  • Sagan V, Peterson KT, Maimaitijiang M, Sidike P, Sloan J, Greeling BA, Maalouf S, Adams C., 2020. Monitoring inland water quality using remote sensing: potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth Sci Rev. 205:103187.
  • Sinaga KP, Yang MS. 2020. Unsupervised K-means clustering algorithm. IEEE Access. 8:80716–80727.
  • Singh SK, Laari PB, Mustak S, Srivastava PK, Szabó S. 2018. Modelling of land use land cover change using earth observation data-sets of Tons River Basin, Madhya Pradesh, India. Geocarto Int. 33(11):1202–1222.
  • Singh KV, Setia R, Sahoo S, Prasad A, Pateriya B. 2015. Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto Int. 30(6):650–661.
  • Singh SK, Srivastava PK, Gupta M, Thakur JK, Mukherjee S. 2014. Appraisal of land use/land cover of mangrove forest ecosystem using support vector machine. Environ Earth Sci. 71(5):2245–2255.
  • Singh S, Singh C, Kumar K, Gupta R, Mukherjee S. 2009. Spatial-temporal monitoring of groundwater using multivariate statistical techniques in Bareilly district of Uttar Pradesh. India J Hydrol Hydromech. 57:45–54.
  • Szabó L, Deák B, Bíró T, Dyke GJ, Szabó S. 2020. NDVI as a proxy for estimating sedimentation and vegetation spread in artificial lakes—monitoring of spatial and temporal changes by using satellite images overarching three decades. Remote Sens. 12(9):1468.
  • Szabó S, Gácsi Z, Balázs B. 2016. Specific features of NDVI, NDWI and MNDWI as reflected in land cover categories. Acta Geogr Landsc Environ. 10(3–4):194–202.
  • Steeneveld GJ, Koopmans S, Heusinkveld BG, Theeuwes NE. 2014. Refreshing the role of open water surfaces on mitigating the maximum urban heat island effect. Landsc Urban Plan. 121:92–96.
  • Tang T, Chen S, Zhao M, Huang W, Luo J. 2019. Very large-scale data classification based on K-means clustering and multi-kernel SVM. Soft Comput. 23(11):3793–3801.
  • Thanh Noi P, Kappas M. 2017. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors. 18(2):18.
  • Tucker CJ. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ. 8(2):127–150.
  • Verpoorter C, Kutser T, Tranvik L. 2012. Automated mapping of water bodies using Landsat multispectral data. Limnol Oceanogr Methods. 10(12):1037–1050.
  • Wangchuk S, Bolch T. 2020. Mapping of glacial lakes using Sentinel-1 and Sentinel-2 data and a random forest classifier: strengths and challenges. Sci Remote Sens. 2:100008.
  • Wang F. 1990. Improving remote sensing image analysis through fuzzy information representation. Photogramm Eng Remote Sens. 56(8):1163–1169.
  • Wang Y, Huang F, Wei Y. 2013. Water body extraction from LANDSAT ETM + image using MNDWI and K-T transformation. International Conference on Geoinformatics.
  • Wouters H, Demuzere M, Ridder KD, Van Lipzig NPM. 2015. The impact of impervious water-storage parametrization on urban climate modelling. Urban Clim. 11:24–50.
  • Xiang X, Li Q, Khan S, Khalaf OI. 2021. Urban water resource management for sustainable environment planning using artificial intelligence techniques. Environ Impact Assess Rev. 86:106515.
  • Xie H, Luo X, Xu X, Pan H, Tong X. 2016. Automated subpixel surface water mapping from heterogeneous urban environments using Landsat 8 OLI imagery. Remote Sens. 8(7):584.
  • Xie H, Luo X, Xu X, Tong X, Jin Y, Pan H, Zhou B. 2014. New hyperspectral difference water index for the extraction of urban water bodies by the use of airborne hyperspectral images. J Appl Remote Sens. 8(1):85098.
  • Xu H. 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens. 27(14):3025–3033.
  • Yamazaki D, Trigg MA, Ikeshima D. 2015. Development of a global ∼90m water body map using multi-temporal Landsat images. Remote Sens Environ. 171:337–351.
  • Yang X, Chen L. 2017. Evaluation of automated urban surface water extraction from Sentinel-2A imagery using different water indices. J Appl Remote Sens. 11(2):26016.
  • Yang X, Zhao S, Qin X, Zhao N, Liang L. 2017. Mapping of urban surface water bodies from Sentinel-2 MSI imagery at 10 m resolution via NDWI-based image sharpening. Remote Sens. 9(6):596.
  • Yu Z, Hao H, Zhang W, Dai H. 2017. A classifier chain algorithm with K-means for multi-label classification on clouds. J Sign Process Syst. 86(2–3):337–346.
  • Zhao H, Chen X. 2005. Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. International Geoscience and Remote Sensing Symposium (IGARSS); p. 1666–1668.
  • Zhong K, Guo R, Kumar S, Yan B, Simcha D, Dhillon I. 2017. Fast classification with binary prototypes. In: Reid N., editor. Proceedings of Machine Learning Research, Lawrence, Vol. 54. Fort Lauderdale, USA: PMLR; p. 1255–1263.
  • Zhou Y, Dong J, Xiao X, Xiao T, Yang Z, Zhao G, Zou Z, Qin Y. 2017. Open surface water mapping algorithms: a comparison of water-related spectral indices and sensors. Water. 9(4):256.