1,880
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Estimating forest aboveground biomass using temporal features extracted from multiple satellite data products and ensemble machine learning algorithm

ORCID Icon &
Article: 2153930 | Received 22 Aug 2022, Accepted 27 Nov 2022, Published online: 08 Dec 2022

References

  • Ahmed R, Siqueira P, Hensley S. 2013. A study of forest biomass estimates from Lidar in the northern temperate forests of New England. Remote Sens Environ. 130:121–135.
  • Allen RJ, Luptowitz R. 2017. El niño-like teleconnection increases California precipitation in response to warming. Nat Commun. 8(1):16055.
  • Amini J, Sumantyo JTS. 2009. Employing a method on sar and optical images for forest biomass estimation. IEEE Trans Geosci Remote Sens. 47(12):4020–4026.
  • Armstrong AH, Huth A, Osmanoglu B, Sun G, Ranson KJ, Fischer R. 2020. A multi-scaled analysis of forest structure using individual-based modeling in a Costa Rican rainforest. Ecol Modell. 433:109226.
  • Baccini A, Goetz SJ, Walker WS, Laporte NT, Sun M, Sulla-Menashe D, Hackler J, Beck PSA, Dubayah R, Friedl MA, et al. 2012. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat Clim Change. 2(3):182–185.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32.
  • Chen TQ, Guestrin C, Assoc Comp M. 2016. Xgboost: a scalable tree boosting system.
  • Clement A, Anja K, Matteo M, Francesco V. 2013. Phenological metrics derived over the European continent from ndvi3g data and modis time series. Remote Sens. 6(1):257–257.
  • Cramer JC. 1998. Population growth and air quality in California. Demography. 35(1):45–56.
  • Cramer JC, Cheney RP. 2000. Lost in the ozone: population growth and ozone in California. Popul Environ. 21(3):315–338.
  • Delbart N, Le Toan T, Kergoat L, Fedotova V. 2006. Remote sensing of spring phenology in boreal regions: a free of snow-effect method using noaa-avhrr and spot-vgt data (1982-2004). Remote Sens Environ. 101(1):52–62.
  • Dhillon RS, Von Wuehlisch G. 2013. Mitigation of global warming through renewable biomass. Biomass Bioenergy. 48:75–89.
  • Dubayah RO, Swatantran A, Huang W, Duncanson L, Tang H, Johnson K, Dunne JO, Hurtt GC. 2017. Cms: lidar-derived biomass, canopy height and cover, Sonoma County, California, 2013. ORNL Distributed Active Archive Center.
  • Dube T, Gara TW, Mutanga O, Sibanda M, Shoko C, Murwira A, Masocha M, Ndaimani H, Hatendi CM. 2018. Estimating forest standing biomass in Savanna woodlands as an indicator of forest productivity using the new generation worldview-2 sensor. Geocarto Int. 33(2):178–188.
  • Duffy PB, Bonfils C, Lobell D. 2007. Interpreting recent temperature trends in California. Eos Trans AGU. 88(41):409–410.
  • Duparc A, Redjadj C, Viard-Cretat F, Lavorel S, Austrheim G, Loison A. 2013. Co-variation between plant above-ground biomass and phenology in sub-alpine grasslands. Appl Veg Sci. 16(2):305–316.
  • Fettig CJ, Mortenson LA, Bulaon BM, Foulk PB. 2019. Tree mortality following drought in the central and southern Sierra Nevada, California, U.S. For Ecol Manage. 432:164–178.
  • Gershunov A, Shulgina T, Clemesha RES, Guirguis K, Pierce DW, Dettinger MD, Lavers DA, Cayan DR, Polade SD, Kalansky J, et al. 2019. Precipitation regime change in western North America: the role of atmospheric rivers. Sci Rep. 9(1):9944.
  • Gevaert CM, García-Haro FJ. 2015. A comparison of starfm and an unmixing-based algorithm for landsat and MODIS data fusion. Remote Sens Environ. 156:34–44.
  • Gonzalez P, Battles JJ, Collins BM, Robards T, Saah DS. 2015. Aboveground live carbon stock changes of California Wildland ecosystems, 2001–2010. For Ecol Manage. 348:68–77.
  • Gwenzi D, Helmer EH, Zhu X, Lefsky MA, Marcano-Vega H. 2017. Predictions of tropical forest biomass and biomass growth based on stand height or canopy area are improved by landsat-scale phenology across Puerto Rico and the US Virgin Islands. Remote Sens. 9(2):123.
  • Hayashi M, Motohka T, Sawada Y. 2019. Aboveground biomass mapping using alos-2/palsar-2 time-series images for Borneo’s forest. IEEE J Sel Top Appl Earth Observ Remote Sens. 12(12):5167–5177.
  • Jiang F, Kutia M, Ma K, Chen S, Long J, Sun H. 2021. Estimating the aboveground biomass of Coniferous Forest in Northeast China using spectral variables, land surface temperature and soil moisture. Sci Total Environ. 785:147335.
  • Jonsson P, Eklundh L. 2002. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans Geosci Remote Sens. 40(8):1824–1832.
  • Kamir E, Waldner F, Hochman Z. 2020. Estimating wheat yields in Australia using climate records, satellite image time series and machine learning methods. ISPRS J Photogramm Remote Sens. 160:124–135.
  • Keeling HC, Phillips OL. 2007. The global relationship between forest productivity and biomass. Glob Ecol Biogeogr. 16(5):618–631.
  • Knapp N, Fischer R, Cazcarra-Bes V, Huth A. 2020. Structure metrics to generalize biomass estimation from lidar across forest types from different continents. Remote Sens Environ. 237:111597.
  • Le Maire G, Marsden C, Nouvellon Y, Grinand C, Hakamada R, Stape J-L, Laclau J-P. 2011. Modis NDVI time-series allow the monitoring of eucalyptus plantation biomass. Remote Sens Environ. 115(10):2613–2625.
  • Le Toan T, Quegan S, Davidson MWJ, Balzter H, Paillou P, Papathanassiou K, Plummer S, Rocca F, Saatchi S, Shugart H, et al. 2011. The biomass mission: mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens Environ. 115(11):2850–2860.
  • Li XJ, Du HQ, Mao FJ, Zhou GM, Chen L, Xing LQ, Fan WL, Xu XJ, Liu YL, Cui L, et al. 2018. Estimating bamboo forest aboveground biomass using ENKF-assimilated modis lai spatiotemporal data and machine learning algorithms. Agric For Meteorol. 256-257:445–457.
  • Li Y, Andersen H-E, Mcgaughey R. 2008. A comparison of statistical methods for estimating forest biomass from light detection and ranging data. Western J Appl For. 23(4):223–231.
  • Li Y, Li M, Li C, Liu Z. 2020. Forest aboveground biomass estimation using landsat 8 and sentinel-1a data with machine learning algorithms. Sci Rep. 10(1):9952.
  • Liu H, Gong P, Wang J, Clinton N, Bai Y, Liang S. 2020. Annual dynamics of global land cover and its long-term changes from 1982 to 2015. Earth Syst Sci Data. 12(2):1217–1243.
  • Liu L, Peng D, Wang Z, Hu Y. 2014. Improving artificial forest biomass estimates using afforestation age information from time series landsat stacks. Environ Monit Assess. 186(11):7293–7306.
  • Luo M, Wang Y, Xie Y, Zhou L, Qiao J, Qiu S, Sun Y. 2021. Combination of feature selection and catboost for prediction: the first application to the estimation of aboveground biomass. Forests. 12(2):216.
  • Macdonald RL, Burke JM, Chen HYH, Prepas EE. 2012. Relationship between aboveground biomass and percent cover of ground vegetation in Canadian boreal plain riparian forests. For Sci. 58(1):47–53.
  • Machwitz M, Gessner U, Conrad C, Falk U, Richters J, Dech S. 2015. Modelling the gross primary productivity of West Africa with the regional biomass model rbm+, using optimized 250m modis fpar and fractional vegetation cover information. Int J Appl Earth Obs Geoinf. 43:177–194.
  • Malhi Y, Doughty C, Galbraith D. 2011. The allocation of ecosystem net primary productivity in tropical forests. Phil Trans R Soc B. 366(1582):3225–3245.
  • Mann ME, Gleick PH. 2015. Climate change and California drought in the 21st century. Proc Natl Acad Sci U S A. 112(13):3858–3859.
  • Mcbride JR, Laćan I. 2018. The impact of climate-change induced temperature increases on the suitability of street tree species in California (USA) cities. Urban For Urban Green. 34:348–356.
  • Mcintyre PJ, Thorne JH, Dolanc CR, Flint AL, Flint LE, Kelly M, Ackerly DD. 2015. Twentieth-century shifts in forest structure in California: denser forests, smaller trees, and increased dominance of oaks. Proc Natl Acad Sci U S A. 112(5):1458–1463.
  • Meroni M, Verstraete MM, Rembold F, Urbano F, Kayitakire F. 2014. A phenology-based method to derive biomass production anomalies for food security monitoring in the horn of Africa. Int J Remote Sens. 35(7):2472–2492.
  • Meroni M, Rembold F, Verstraete M, Gommes R, Schucknecht A, Beye G. 2014. Investigating the relationship between the inter-annual variability of satellite-derived vegetation phenology and a proxy of biomass production in the Sahel. Remote Sens. 6(6):5868–5884.
  • Minnich RA, Barbour MG, Burk JH, Sosa-Ramírez J. 2000. Californian mixed-conifer forests under unmanaged fire regimes in the Sierra San Pedro Mártir, Baja California, Mexico. J Biogeogr. 27(1):105–129.
  • Mitchard E, Saatchi S, Baccini A, Asner G, Goetz S, Harris N, Brown S. 2013. Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps. Carbon Balance Manag. 8(1):10.
  • Mitchard ETA. 2018. The tropical forest carbon cycle and climate change. Nature. 559(7715):527–534.
  • Molinier M, López-Sánchez CA, Toivanen T, Korpela I, Corral-Rivas JJ, Tergujeff R, Häme T. 2016. Relasphone—mobile and participative in situ forest biomass measurements supporting satellite image mapping. Remote Sens. 8(10):869.
  • Moradi F, Sadeghi SMM, Heidarlou HB, Deljouei A, Boshkar E, Borz SA. 2022. Above-ground biomass estimation in a mediterranean sparse coppice oak forest using Sentinel-2 data.
  • Mutanga O, Adam E, Cho MA. 2012. High density biomass estimation for wetland vegetation using worldview-2 imagery and random forest regression algorithm. Int J Appl Earth Obs Geoinf. 18:399–406.
  • Muukkonen P, Heiskanen J. 2005. Estimating biomass for boreal forests using aster satellite data combined with standwise forest inventory data. Remote Sens Environ. 99(4):434–447.
  • Muukkonen P, Makipaa R, Laiho R, Minkkinen K, Vasander H, Finer L. 2006. Relationship between biomass and percentage cover in understorey vegetation of boreal coniferous forests. Silva Fenn. 40(2):231–245.
  • Nandy S, Singh R, Ghosh S, Watham T, Kushwaha SPS, Kumar AS, Dadhwal VK. 2017. Neural network-based modelling for forest biomass assessment. Carbon Manage. 8(4):305–317.
  • Nguyen TH, Jones S, Soto-Berelov M, Haywood A, Hislop S. 2020. Landsat time-series for estimating forest aboveground biomass and its dynamics across space and time: a review. Remote Sens. 12(1):98.
  • Notarnicola C. 2020. Hotspots of snow cover changes in global mountain regions over 2000-2018. Remote Sens Environ. 243:111781.
  • Nuthammachot N, Askar A, Stratoulias D, Wicaksono P. 2022. Combined use of sentinel-1 and sentinel-2 data for improving above-ground biomass estimation. Geocarto Int. 37(2):366–376.
  • Pan Z, Huang J, Zhou Q, Wang L, Cheng Y, Zhang H, Blackburn GA, Yan J, Liu J. 2015. Mapping crop phenology using ndvi time-series derived from hj-1 a/b data. Int J Appl Earth Obs Geoinf. 34:188–197.
  • Pandey PC, Srivastava PK, Chetri T, Choudhary BK, Kumar P. 2019. Forest biomass estimation using remote sensing and field inventory: a case study of Tripura, India. Environ Monit Assess. 191(9):593.
  • Pastor-Guzman J, Dash J, Atkinson PM. 2018. Remote sensing of mangrove forest phenology and its environmental drivers. Remote Sens Environ. 205:71–84.
  • Pflugmacher D, Cohen WB, Kennedy RE, Yang Z. 2014. Using landsat-derived disturbance and recovery history and lidar to map forest biomass dynamics. Remote Sens Environ. 151:124–137.
  • Polade SD, Gershunov A, Cayan DR, Dettinger MD, Pierce DW. 2017. Precipitation in a warming world: assessing projected hydro-climate changes in California and other mediterranean climate regions. Sci Rep. 7(1):10783.
  • Potapov P, Li X, Hernandez-Serna A, Tyukavina A, Hansen MC, Kommareddy A, Pickens A, Turubanova S, Tang H, Silva CE, et al. 2021. Mapping global forest canopy height through integration of gedi and landsat data. Remote Sens Environ. 253:112165.
  • Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, et al. 2011. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci U S A. 108(24):9899–9904.
  • Sanstad AH, Johnson H, Goldstein N, Franco G. 2011. Projecting long-run socioeconomic and demographic trends in California under the sres a2 and b1 scenarios. Clim Change. 109(S1):21–42.
  • Sarker MLR, Nichol J, Iz HB, Ahmad BB, Rahman AA. 2013. Forest biomass estimation using texture measurements of high-resolution dual-polarization c-band sar data. IEEE Trans Geosci Remote Sens. 51(6):3371–3384.
  • Simard M, Pinto N, Fisher JB, Baccini A. 2011. Mapping forest canopy height globally with spaceborne lidar. J Geophys Res. 116(G4):G04021.
  • Sinha S, Jeganathan C, Sharma LK, Nathawat MS. 2015. A review of radar remote sensing for biomass estimation. Int J Environ Sci Technol. 12(5):1779–1792.
  • Song C. 2012. Optical remote sensing of forest leaf area index and biomass. Prog Phys Geogr.
  • Song X, Zeng X, Tian D. 2018. Allocation of forest net primary production varies by forest age and air temperature. Ecol Evol. 8(23):12163–12172.
  • Stovall AEL, Shugart H, Yang X. 2019. Tree height explains mortality risk during an intense drought. Nat Commun. 10(1):4385.
  • Struglia R, Winter PL. 2002. The role of population projections in environmental management. Environ Manage. 30(1):13–23.
  • Sun G, Ranson KJ, Guo Z, Zhang Z, Montesano P, Kimes D. 2011. Forest biomass mapping from lidar and radar synergies. Remote Sens Environ. 115(11):2906–2916.
  • Urbazaev M, Thiel C, Migliavacca M, Reichstein M, Rodriguez-Veiga P, Schmullius C. 2016. Improved multi-sensor satellite-based aboveground biomass estimation by selecting temporally stable forest inventory plots using ndvi time series. Forests. 7(12):169.
  • Van Leeuwen WJD. 2008. Monitoring the effects of forest restoration treatments on post-fire vegetation recovery with modis multitemporal data. Sensors (Basel). 8(3):2017–2042.
  • Wang X, Ouyang S, Sun OJ, Fang J. 2013. Forest biomass patterns across Northeast China are strongly shaped by forest height. For Ecol Manage. 293:149–160.
  • White JC, Wulder MA, Hermosilla T, Coops NC, Hobart GW. 2017. A nationwide annual characterization of 25years of forest disturbance and recovery for Canada using landsat time series. Remote Sens Environ. 194:303–321.
  • White MA, De Beurs KM, Didan K, Inouye DW, Richardson AD, Jensen OP, O'keefe J, Zhang G, Nemani RR, Van Leeuwen WJD, et al. 2009. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006. Glob Change Biol. 15(10):2335–2359.
  • Xu Q, Greenberg J. 2018. Lidar-derived aboveground biomass and uncertainty for California forests, 2005-2014. ORNL Distributed Active Archive Center.
  • Yang B, Zhang Y, Mao X, Lv Y, Shi F, Li M. 2022. Mapping spatiotemporal changes in forest type and aboveground biomass from landsat long-term time-series analysis—a case study from Yaoluoping National Nature Reserve, Anhui province of Eastern China. Remote Sens. 14(12):2786.
  • Yu Y, Saatchi S, Heath LS, Lapoint E, Myneni R, Knyazikhin Y. 2010. Regional distribution of forest height and biomass from multisensor data fusion. J Geophys Res. 115(G2):n/a–n/a.
  • Zamani Joharestani M, Cao C, Ni X, Bashir B, Talebiesfandarani S. 2019. Pm2.5 prediction based on random forest, xgboost, and deep learning using multisource remote sensing data. Atmosphere. 10(7):373.
  • Zeng H, Jia G, Epstein H. 2011. Recent changes in phenology over the northern high latitudes detected from multi-satellite data. Environ Res Lett. 6(4):045508–045518.
  • Zhang G, Ganguly S, Nemani RR, White MA, Milesi C, Hashimoto H, Wang W, Saatchi S, Yu Y, Myneni RB. 2014a. Estimation of forest aboveground biomass in California using canopy height and leaf area index estimated from satellite data. Remote Sens Environ. 151(0):44–56.
  • Zhang Y, Li W, Liang S. 2021. New metrics and the combinations for estimating forest biomass from glas data. IEEE J Sel Top Appl Earth Observ Remote Sens. 14:7830–7839.
  • Zhang Y, Liang S, Sun G. 2014b. Forest biomass mapping of Northeastern China using glas and modis data. IEEE J Sel Top Appl Earth Observ Remote Sens. 7(1):140–152.
  • Zhang Y, Liang S, Yang L. 2019. A review of regional and global gridded forest biomass datasets. Remote Sens. 11(23):2744.
  • Zhang Y, Liu J, Liang S, Li M. 2022a. A new spatial–temporal depthwise separable convolutional fusion network for generating landsat 8-day surface reflectance time series over forest regions. Remote Sens. 14(9):2199.
  • Zhang Y, Liu J, Shen W. 2022b. A review of ensemble learning algorithms used in remote sensing applications. Appl Sci. 12(17):8654.
  • Zhang Y, Ma J, Liang S, Li X, Li M. 2020. An evaluation of eight machine learning regression algorithms for forest aboveground biomass estimation from multiple satellite data products. Remote Sens. 12(24):4015.
  • Zhang Y, Ma J, Liang S, Li X, Liu J. 2022c. A stacking ensemble algorithm for improving the biases of forest aboveground biomass estimations from multiple remotely sensed datasets. GISci Remote Sens. 59(1):234–249.
  • Zhu X, Liu D. 2015. Improving forest aboveground biomass estimation using seasonal landsat ndvi time-series. ISPRS J Photogramm Remote Sens. 102:222–231.
  • Zolkos SG, Goetz SJ, Dubayah R. 2013. A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sens Environ. 128:289–298.