687
Views
1
CrossRef citations to date
0
Altmetric
Research Article

An enhanced spatiotemporal fusion model with degraded fine-resolution images via relativistic generative adversarial networks

ORCID Icon, &
Article: 2153931 | Received 23 Aug 2022, Accepted 27 Nov 2022, Published online: 09 Dec 2022

References

  • Arjovsky M, Chintala S, Bottou L. 2017. Wasserstein generative adversarial networks. In: Proc. 34th Int. Conf. Mach. Learn.; vol. 70; Aug; Sydney, Australia. p. 214–223.
  • Baby D, Verhulst S. 2019. Sergan: speech enhancement using relativistic generative adversarial networks with gradient penalty. In: Proc. 2019 IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP); May; Brighton, UK. p. 106–110.
  • Benzenati T, Kessentini Y, Kallel A. 2022. Pansharpening approach via two-stream detail injection based on relativistic generative adversarial networks. Expert Syst Appl. 188:115996.
  • Chen Y, Shi K, Ge Y, Zhou Y. 2022. Spatiotemporal remote sensing image fusion using multiscale two-stream convolutional neural networks. IEEE Trans Geosci Remote Sens. 60:1–12.
  • Emelyanova IV, McVicar TR, Van Niel TG, Li LT, Van Dijk AI. 2013. Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: a framework for algorithm selection. Remote Sens Environ. 133:193–209.
  • Gao F, Masek J, Schwaller M, Hall F. 2006. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans Geosci Remote Sens. 44(8):2207–2218.
  • Gastineau A, Aujol JF, Berthoumieu Y, Germain C. 2022. Generative adversarial network for pansharpening with spectral and spatial discriminators. IEEE Trans Geosci Remote Sens. 60:1–11.
  • Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. 2014. Generative adversarial nets. Adv Neural Inf Process Syst. 27:2672–2680.
  • Guo D, Shi W, Hao M, Zhu X. 2020. FSDAF 2.0: improving the performance of retrieving land cover changes and preserving spatial details. Remote Sens Environ. 248:111973.
  • Haut JM, Paoletti ME, Plaza J, Plaza A, Li J. 2019. Visual attention-driven hyperspectral image classification. IEEE Trans Geosci Remote Sens. 57(10):8065–8080.
  • He KM, Zhang XY, Ren SQ, Sun J. 2016. Identity mappings in deep residual networks. In: 14th Eur. Conf. Comput. Vis. (ECCV). Lect. Notes Comput. Sci.; vol. 9908; Oct; Amsterdam, Netherlands. p. 630–645.
  • Hou S, Sun W, Guo B, Li X, Zhang J, Xu C, Li X, Shao Y, Li C. 2022. RFSDAF: a new spatiotemporal fusion method robust to registration errors. IEEE Trans Geosci Remote Sens. 60:1–18.
  • Hu J, Shen L, Albanie S, Sun G, Wu EH. 2020. Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell. 42(8):2011–2023.
  • Huang B, Song H. 2012. Spatiotemporal reflectance fusion via sparse representation. IEEE Trans Geosci Remote Sens. 50(10):3707–3716.
  • Jang DW, Park RH. 2019. Densenet with deep residual channel-attention blocks for single image super resolution. In Proc. 32nd IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. Workshops; Jun; Long Beach, CA, USA. p. 1795–1803.
  • Jolicoeur-Martineau A. 2019. The relativistic discriminator: a key element missing from standard GAN. In: 7th Int. Conf. Learn. Represent. (ICLR); May; New Orleans, LA, USA. p. 1–26.
  • Kingma DP, Ba JL. 2015. Adam: a method for stochastic optimization. In: 3rd Int. Conf. Learn. Represent. (ICLR); May; San Diego, CA. p. 1–15.
  • Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z. 2017. Photo-realistic single image super-resolution using a generative adversarial network. In: Proc. 30th IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR); Jul; Honolulu, HI, USA. p. 105–114.
  • Li J, Huo H, Li C, Wang R, Feng Q. 2021a. AttentionFGAN: infrared and visible image fusion using attention-based generative adversarial networks. IEEE Trans Multimed. 23:1383–1396.
  • Li J, Li Y, Cai R, He L, Chen J, Plaza A. 2022a. Enhanced spatiotemporal fusion via MODIS-like images. IEEE Trans Geosci Remote Sens. 60:1–17.
  • Li J, Li Y, He L, Chen J, Plaza A. 2020a. Spatio-temporal fusion for remote sensing data: an overview and new benchmark. Sci China Life Sci. 63(4):140301.
  • Li Q, Lu L, Li Z, Wu W, Liu Z, Jeon G, Yang X. 2021b. Coupled gan with relativistic discriminators for infrared and visible images fusion. IEEE Sens J. 21(6):7458–7467.
  • Li W, Yang C, Peng Y, Du J. 2022b. A pseudo-siamese deep convolutional neural network for spatiotemporal satellite image fusion. IEEE J Sel Top Appl Earth Obs Remote Sens. 15:1205–1220.
  • Li W, Zhang X, Peng Y, Dong M. 2021c. Spatiotemporal fusion of remote sensing images using a convolutional neural network with attention and multiscale mechanisms. Int J Remote Sens. 42(6):1973–1993.
  • Li X, Foody GM, Boyd DS, Ge Y, Zhang Y, Du Y, Ling F. 2020b. SFSDAF: an enhanced FSDAF that incorporates sub-pixel class fraction change information for spatio-temporal image fusion. Remote Sens Environ. 237:111537.
  • Li Y, Li J, He L, Chen J, Plaza A. 2020c. A new sensor bias-driven spatio-temporal fusion model based on convolutional neural networks. Sci China Life Sci. 63(4):140302.
  • Liu M, Yang W, Zhu X, Chen J, Chen X, Yang L, Helmer EH. 2019a. An improved flexible spatiotemporal data fusion (IFSDAF) method for producing high spatiotemporal resolution normalized difference vegetation index time series. Remote Sens Environ. 227:74–89.
  • Liu Q, Zhou H, Xu Q, Liu X, Wang Y. 2021. PSGAN: a generative adversarial network for remote sensing image pan-sharpening. IEEE Trans Geosci Remote Sens. 59(12):10227–10242.
  • Liu S, Zhou J, Qiu Y, Chen J, Zhu X, Chen H. 2022. The FIRST model: spatiotemporal fusion incorrporting spectral autocorrelation. Remote Sens Environ. 279:113111.
  • Liu X, Deng C, Chanussot J, Hong D, Zhao B. 2019b. StfNet: a two-stream convolutional neural network for spatiotemporal image fusion. IEEE Trans Geosci Remote Sens. 57(9):6552–6564.
  • Luo P, Ren J, Peng Z, Zhang R, Li J. 2019. Differentiable learning-to-normalize via switchable normalization. In: 7th Int. Conf. Learn. Represent. (ICLR); May; New Orleans, LA, USA.
  • Ma Y, Wei J, Tang W, Tang R. 2021. Explicit and stepwise models for spatiotemporal fusion of remote sensing images with deep neural networks. Int J Appl Earth Obs. 105:102611.
  • Mao X, Li Q, Xie H, Lau RY, Wang Z, Paul Smolley S. 2017. Least squares generative adversarial networks. In Proc. 16th IEEE Int. Conf. Comput. Vision (ICCV); Oct; Venice, Italy. p. 2813–2821.
  • Miyato T, Kataoka T, Koyama M, Yoshida Y. 2018. Spectral normalization for generative adversarial networks. In: Int. Conf. Learn. Represent. (ICLR); May; Vancouver, BC, Canada.
  • Mou L, Zhu XX. 2020. Learning to pay attention on spectral domain: a spectral attention module-based convolutional network for hyperspectral image classification. IEEE Trans Geosci Remote Sens. 58(1):110–122.
  • Nwankpa CE, Ijomah W, Gachagan A, Marshall S. 2021. Activation functions: comparison of trends in practice and research for deep learning. In: 2nd Int. Conf. on Comput. Sci. Tec.; Dec; Jamshoro, Pakistan. p. 124–133.
  • Peng Y, Li W, Luo X, Du J, Gan Y, Gao X. 2021. Integrated fusion framework based on semicoupled sparse tensor factorization for spatio-temporal–spectral fusion of remote sensing images. Inf Fusion. 65:21–36.
  • Shang C, Li X, Yin Z, Li X, Wang L, Zhang Y, Du Y, Ling F. 2022. Spatiotemporal reflectance fusion using a generative adversarial network. IEEE Trans Geosci Remote Sens. 60:1–15.
  • Simonyan K, Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition. In: 3rd Int. Conf. Learn. Represent. (ICLR); May; San Diego, CA, USA.
  • Song H, Huang B. 2013. Spatiotemporal satellite image fusion through one-pair image learning. IEEE Trans Geosci Remote Sens. 51(4):1883–1896.
  • Song H, Liu Q, Wang G, Hang R, Huang B. 2018. Spatiotemporal satellite image fusion using deep convolutional neural networks. IEEE J Sel Top Appl Earth Obs Remote Sens. 11(3):821–829.
  • Tan Z, Di L, Zhang M, Guo L, Gao M. 2019. An enhanced deep convolutional model for spatiotemporal image fusion. Remote Sens. 11(24):2898.
  • Tan Z, Gao M, Li X, Jiang L. 2022. A flexible reference-insensitive spatiotemporal fusion model for remote sensing images using conditional generative adversarial network. IEEE Trans Geosci Remote Sens. 60:1–13.
  • Tan Z, Yue P, Di L, Tang J. 2018. Deriving high spatiotemporal remote sensing images using deep convolutional network. Remote Sens. 10(7):1066.
  • Vivone G, Dalla Mura M, Garzelli A, Pacifici F. 2021. A benchmarking protocol for pansharpening: dataset, preprocessing, and quality assessment. IEEE J Sel Top Appl Earth Obs Remote Sens. 14:6102–6118.
  • Wang X, Xie L, Dong C, Shan Y. 2021. Real-ESRGAN: training real-world blind super-resolution with pure synthetic data. In: Proc. 18th IEEE Int. Conf. Comput. Vis. Workshops; Oct; Virtual, Online, Canada. p. 1905–1914.
  • Wang X, Yu K, Wu S, Gu J, Liu Y, Dong C, Qiao Y, Change Loy C. 2019. Esrgan: enhanced super-resolution generative adversarial networks. In: 15th Eur. Conf. Comput. Vis. (ECCV). Lect. Notes Comput. Sci. (LNCS); vol. 11133; Sep; Munich, Germany. p. 63–79.
  • Wang Z, Simoncelli EP, Bovik AC. 2003. Multiscale structural similarity for image quality assessment. In: Proc. 37th Asilomar Conf. Signals, Syst. Comput; vol. 2. p. 1398–1402.
  • Woo S, Park J, Lee JY, Kweon IS. 2018. Cbam: convolutional block attention module. In: 15th Eur. Conf. Comput. Vis. (ECCV); Sep. p. 3–19.
  • Wu M, Niu Z, Wang C, Wu C, Wang L. 2012. Use of modis and landsat time series data to generate high-resolution temporal synthetic landsat data using a spatial and temporal reflectance fusion model. J Appl Remote Sens. 6(1):063507.
  • Wu Y, Feng S, Lin C, Zhou H, Huang M. 2022. A three stages detail injection network for remote sensing images pansharpening. Remote Sens. 14(5):1077.
  • Yuhas RH, Goetz AF, Boardman JW. 1992. Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm. In: Proc. Summaries 3rd Annu. JPL Airborne Geosci. Workshop; Jun; Pasadena, CA, USA. p. 147–149.
  • Zhang H, Song Y, Han C, Zhang L. 2021. Remote sensing image spatiotemporal fusion using a generative adversarial network. IEEE Trans Geosci Remote Sens. 59(5):4273–4286.
  • Zhao H, Gallo O, Frosio I, Kautz J. 2017. Loss functions for image restoration with neural networks. IEEE Trans Comput Imaging. 3(1):47–57.
  • Zhou J, Chen J, Chen X, Zhu X, Qiu Y, Song H, Rao Y, Zhang C, Cao X, Cui X. 2021. Sensitivity of six typical spatiotemporal fusion methods to different influential factors: a comparative study for a normalized difference vegetation index time series reconstruction. Remote Sens Environ. 252:112130.
  • Zhu M, Jiao L, Liu F, Yang S, Wang J. 2021. Residual spectral–spatial attention network for hyperspectral image classification. IEEE Trans Geosci Remote Sens. 59(1):449–462.
  • Zhu X, Chen J, Gao F, Chen X, Masek JG. 2010. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens Environ. 114(11):2610–2623.
  • Zhu X, Cheng D, Zhang Z, Lin S, Dai J. 2019. An empirical study of spatial attention mechanisms in deep networks. In Proc. 17th IEEE Int. Conf. Comput. Vision (ICCV); Oct; Seoul, Korea. p. 6688–6697.
  • Zhu X, Helmer EH, Gao F, Liu D, Chen J, Lefsky MA. 2016. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sens Environ. 172:165–177.
  • Zhu X, Zhan W, Zhou J, Chen X, Liang Z, Xu S, Chen J. 2022. A novel framework to assess all-round performances of spatiotemporal fusion models. Remote Sens Environ. 274:113002.
  • Zhukov B, Oertel D, Lanzl F, Reinhackel G. 1999. Unmixing-based multisensor multiresolution image fusion. IEEE Trans Geosci Remote Sens. 37(3):1212–1226.