2,316
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Estimation of emissions from crop residue burning in Türkiye using remotely sensed data and the Google Earth Engine platform

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2157052 | Received 19 May 2022, Accepted 05 Dec 2022, Published online: 20 Dec 2022

References

  • Aksoy S, Yildirim A, Gorji T, Hamzehpour N, Tanık AG, Sertel E. 2022. Assessing the performance of machine learning algorithms for soil salinity mapping in Google Earth Engine Platform using Sentinel-2A and Landsat-8 OLI data. Adv Space Res. 69(2):1072–1086.
  • Alganci U, Sertel E, Ozdogan M, Ormeci C. 2013. Parcel-level ıdentification of crop types using different classification algorithms and multi-resolution ımagery in Southeastern Turkey. Photogramm Eng Remote Sensing. 79(11):1053–1065.
  • Bahsi K, Salli B, Kılıç D, Sertel E. 2019. Estimation of emissions from crop residue burning using remote sensing data. IJGW. 19(1/2):94–105.
  • Behera MD, Mudi S, Shome P, Das PK, Kumar S, Joshi A, Rathore A, Deep A, Kumar A, Sanwariya C, et al. 2021. COVID-19 slowdown induced improvement in air quality in India: rapid assessment using Sentinel-5P TROPOMI data. Geocarto Int. 36:1–21. https://doi.org/10.1080/10106049.2021.1993351
  • Cao G, Zhang X, Gong S, Zheng F. 2008. Investigation on emission factors of particulate matter and gaseous pollutants from crop residue burning. J Environ Sci. 20(1):50–55.
  • Chakrabarti S, Khan MT, Kishore A, Roy D, Scott SP. 2019. Scott Risk of acute respiratory infection from crop burning in India: estimating disease burden and economic welfare from satellite and national health survey data for 250 000 persons. Int J Epidemiol. 48(4):1113–1124.
  • Chauhan AJ, Johnston SL. 2003. Air pollution and infection in respiratory illness. British Med Bull. 68(1):95–112.
  • Chen Z, Chen D, Zhuang Y, Cai J, Zhao N, He B, Gao B, Xu B. 2017. Examining the influence of crop residue burning on local PM2.5 concentrations in Heilongjiang Province using ground observation and remote sensing data. Remote Sens. 9(10):971.
  • Çıtak S, Sönmez S, Öktüren F. 2006. Bitkisel Kökenli Atıkların Tarımda Kullanılabilme Olanakları. Derim. 23(1):40–53.
  • Demidova LA, Klyueva IA, Pylkin AN. 2019. Hybrid approach to improving the results of the svm classifi-cation using the random forest algorithm. Procedia Comput Sci. 150:455–461.
  • Dennis A, Fraser M, Anderson S, Allen D. 2002. Air pollutant emissions associated with forest, grassland, and agricultural burning in Texas. Atmos Environ. 36(23):3779–3792.
  • Ding Y, Zhang H, Wang Z, Xie Q, Wang Y, Liu L, Hall CC. 2020. A comparison of estimating crop residue cover from Sentinel-2 data using empirical regressions and machine learning methods. Remote Sens. 12(9):1470.
  • EEA (European Environment Agency). 2016. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016: technical guidance to prepare national emission inven-tories. EEA-Report; p. 21.
  • ESA – Sentinel-5P Website. 2020. http://www.esa.int/Applications/Observing%7B%5C%7Dthe%7B%5C%7DEarth/Copernicus/Sentinel-5P.
  • Fang L, Yang J. 2014. Atmospheric effects on the performance and threshold extrapolation of multi-temporal Landsat derived dNBR for burn severity assessment. Int J Appl Earth Obs Geoinf. 33:10–20.
  • Gao R, Jiang W, Gao W, Sun S. 2017. Emission inventory of crop residue open burning and its high-resolution spatial distribution in 2014 for Shandong province, China. Atmos Pollut Res. 8(3):545–554.
  • García-Llamas P, Suárez-Seoane S, Fernández-Guisuraga JM, Fernández-García V, Fernández-Manso A, Quintano C, Taboada A, Marcos E, Calvo L. 2019. Evaluation and comparison of Landsat 8, Sentinel-2 and Deimos-1 remote sensing indices for assessing burn severity in Mediterranean fire-prone ecosystems. Int J Appl Earth Obs Geoinf. 80:137–144.
  • Giglio L, Schroeder W, Justice CO. 2016. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens Environ. 178:31–41.
  • Glushkov I, Zhuravleva I, McCarty JL, Komarova A, Drozdovsky A, Drozdovskaya M, Lupachik V, Yaroshenko A, Stehman SV, Prishchepov AV. 2021. Spring fires in Russia: results from participatory burned area mapping with Sentinel-2 imagery. Environ Res Lett. 16(12):125005.
  • Hayashi K, Ono K, Kajiura M, Sudo S, Yonemura S, Fushimi A, Saitoh K, Fujitani Y, Tanabe K. 2014. Trace gas and particle emissions from open burning of three cereal crop residues: ıncrease in residue moistness enhances emissions of carbon monoxide, methane, and particulate organic car-bon. Atmos Environ. 95:36–44.
  • IPCC: The Intergovernmental Panel on Climate Change. 2020. https://www.ipcc.ch/documentation.
  • Jenkins BM, Turn SQ, Williams RB. 1992. Atmospheric emissions from agricultural burning in California: de-termination of burn fractions, distribution factors, and crop-specific contributions. Agricult Ecosyst Environ. 38(4):313–330.
  • Jethva H, Torres O, Field RD, Lyapustin A, Gautam R, Kayetha V. 2019. Connecting crop productivity, residue fires, and air quality over Northern India. Sci Rep. 9(1):16594.
  • Kalluri ROR, Zhang X, Bi L, Zhao J, Yu L, Kotalo RG. 2020. Carbonaceous aerosol emission reduction over Shandong province and the impact of air pollution control as observed from synthetic satellite data. Atmos Environ. 222:117150.
  • Keeley JE. 2009. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int J Wildland Fire. 18(1):116–126.
  • Lee J-J, Lee J-B, Kim O, Heo G, Lee H, Lee D, Kim D-g, Lee S-D. 2021. Crop residue burning in Northeast China and its ımpact on PM2.5 concentrations in South Korea. Atmosphere. 12(9):1212.
  • Li X, Wang S, Duan L, Hao J, Li C, Chen Y, Yang L. 2007. Particulate and trace gas emissions from open burning of wheat straw and corn stover in China. Environ Sci Technol. 41(17):6052–6058.
  • Lin M, Begho T. 2022. Crop residue burning in South Asia: a review of the scale, effect, and solutions with a focus on reducing reactive nitrogen losses. J Environ Manage. 314:115104. .
  • Marques AC, Veras CE, Rodriguez DA. 2022. Assessment of water policies contributions for sustainable water resources management under climate change scenarios. J Hydrol. 608(127690):127690. www.elsevier.com/inca/publications/store/5/0/3/3/4/3.
  • McCarty JL. 2011. Remote sensing-based estimates of annual and seasonal emissions from crop residue burning in the contiguous United States. J Air Waste Manag Assoc. 61(1):22–34.
  • McCarty JL, Ellicott EA, Romanenkov V, Rukhovitch D, Koroleva P. 2012. Multi-year black carbon emissions from cropland burning in the Russian Federation. Atmos Environ. 63:223–238.
  • McCarty JL, Justice CO, Korontzi S. 2007. Agricultural burning in the Southeastern United States detected by MODIS. Remote Sens Environ. 108(2):151–162.
  • McCarty JL, Krylov AM, Prishchepov A, Banach DM, Tyukavina A, Potapov PV, Turubanova S. 2017. Agricultural fires in European Russia, Belarus, and Lithuania and their impact on air quality, 2002 – 2012. In: Gutman G, Radeloff V, editors. Land-cover and land-use changes in eastern Europe after the collapse of the Soviet Union in 1991, Washington (DC): Springer; p. 193–221.
  • Mountrakis G, Im J, Ogole C. 2011. Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens. 66(3):247–259.
  • Mucherino A, Papajorgji P, Pardalos PM. 2009. A survey of data mining techniques applied to agriculture. Oper Res Int J. 9(2):121–140.
  • Nakaegawa T, Murazaki K. 2022. Historical trends in climate indices relevant to surface air temperature and precipitation in Japan for recent 120 years.Int J Climatol. https://doi.org/10.1002/joc.7784
  • Ni H, Han Y, Cao J, Antony Chen LW, Tian J, Wang X, Chow JC, Watson JG, Wang Q, Wang P, et al. 2015. Emission characteristics of carbona-ceous particles and trace gases from open burning of crop residues in China. Atmos Environ. 123:399–406.
  • Petropoulos GP, Islam T. (Eds.). 2017. Remote sensing of hydrometeorological hazards. CRC Press, Taylor & Francis Group, Boca Raton.
  • Santiago-De La Rosa N, Gonzalez-Cardoso G, Figueroa-Lara JDJ, Gutiérrez-Arzaluz M, Octaviano-Villasana C, Ramírez-Hernandez IF, Mugica-Alvarez V. 2018. Emission factors of atmospheric and climatic pollutants from crop residues burning. J Air Waste Manag Assoc. 68(8):849–865.
  • Saud S, Jamil B, Upadhyay Y, Irshad K. 2020. Performance improvement of em-pirical models for estimation of global solar radiation in India: a k-fold cross-validation approach. Sustain Energy Technol Assessments. 40:100768. 2020.100768.
  • Saxena P, Sonwani S, Srivastava A, Jain M, Srivastava A, Bharti A, Rangra D, Mongia N, Tejan S, Bhardwaj S. 2021. Impact of crop residue burning in Haryana on the air quality of Delhi. India Heliyon. 7(5):e06973.
  • Schroeder W, Oliva P, Giglio L, Csiszar IA. 2014. The New VIIRS 375m active fire detection data product: algorithm description and initial assessment. Remote Sens Environ. 143:85–96.
  • Sevinc G, Aydoğdu MH, Cançelik M, Sevinc MR. 2019. Farmers' attitudes toward public support policy o for sustainable agriculture in GAPSanliurfa, Turkey. Sustainability. 11(23):6617.
  • Shinde R, Shahi DK, Mahapatra P, Singh CS, Naik SK, Thombare N, Singh AK. 2022. Management of crop residues with special reference to the on-farm utilization methods: a review. Ind Crops Prod. 181:114772. https://doi.org/10.1016/j.indcrop.2022.114772.
  • Shen Y, Jiang C, Chan KL, Hu C, Yao L. 2021. Estimation of field-level NOx emissions from crop residue burning using remote sensing data: A case study in Hubei, China. Remote Sens. 13(3):404.
  • Singh G, Kant Y, Dadhwal VK. 2009. Remote sensing of crop residue burning in Punjab (India): a study on burned area estimation using mulyi-sensor approach. Geocarto Int. 24(4):273–292.
  • Singh D, Kundu N, Ghosh S. 2021. Mapping rice residues burning and generated pollutants using Sentinel-2 data over northern part of India. Remote Sens Appl: soc Environ. 22:100486.
  • Sun Z, Zhu Q, Deng S, Li X, Hu X, Chen R, Shao G, Yang H, Yang G. 2022. Estimation of crop residue cover in rice paddies by a dynamic-quadripartite pixel model based on Sentinel-2A data. Int J Appl Earth Observ Geoinf. 106:102645.
  • Topaloğlu RH, Aksu GA, Ghale YAG, Sertel E. 2021. High-resolution land use and land cover change analysis using GEOBIA and landscape metrics: a case of Istanbul, Turkey. Geocarto Int. 1–27, https://doi.org/10.1080/10106049.2021.2012273.
  • TSI (The Turkish Statistical Institute). 2020. https://biruni.tuik.gov.tr.
  • US Environmental Protection Agency. 2014. National Emissions Inventory (NEI) Documentation [2016].
  • Vadrevu K, San-Miguel-Ayanz J, Roy D, Wooster M, Giglio L, Schroeder W, Csiszar I. 2022. Summary of the 5th GWIS & GOFC-GOLD Fire Implementation Team Meeting Stresa, Italy. NASA Earth Observer. 34(5):1–13.
  • Vapnik V, Golowich S, Smola AJ. 1997. Support vector method for function approximation, regression estimation, and signal processing. Adv Neural Inf Process Syst. 9:281–287.
  • Vijay Deshpande M, Pillai D, Jain M. 2022. Detecting and quantifying residue burning in smallholder systems: an integrated approach using Sentinel-2 data. Int J Appl Earth Obs Geoinf. 108:102761.
  • Zhang H, Ye X, Cheng T, Chen J, Yang X, Wang L, Zhang R. 2008. A laboratory study of agricultural crop residue combustion in China: emission factors and emission inventory. Atmos Environ. 42(36):8432–8441.
  • Zhang S, Zhao H, Wu Z, Tan L. 2022. Comparing the ability of burned area products to detect crop residue burning in China. Remote Sens. 14(3):693.