1,385
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Modelling some stand parameters using Landsat 8 OLI and Sentinel-2 satellite images by machine learning techniques: a case study in Türkiye

ORCID Icon, &
Article: 2158238 | Received 29 Mar 2022, Accepted 08 Dec 2022, Published online: 28 Dec 2022

References

  • Aertsen W, Kint V, Van Orshoven J, Özkan K, Muys B. 2010. Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecol Modell. 221(8):1119–1130.
  • Ahmadi K, Kalantar B, Saeidi V, Harandi EKG, Janizadeh S, Ueda N. 2020. Comparison of machine learning methods for mapping the stand characteristics of temperate forests using multi-spectral sentinel-2 data. Remote Sens. 12(18):3019.
  • Aiello S, Kraljevic T, Maj P. 2015. Package ‘h2o. dim. 2:12.
  • Astola H, Häme T, Sirro L, Molinier M, Kilpi J. 2019. Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region. Remote Sens Environ. 223:257–273.
  • Ateş S, Demir E. 2009. Uzaktan algılamada çözünürlüğe bağlı veri kazanımı potansiyeli. TMMOB Harita ve Kadastro Mühendisleri Odası 12. Türkiye Harita Bilimsel ve Teknik Kurultayı, Ankara.
  • Baskent EZ, Terzioğlu S, Başkaya Ş. 2008. Developing and implementing multiple-use forest management planning in Turkey. Environ Manage. 42(1):37–48.
  • Beaudoin A, Hall RJ, Castilla G, Filiatrault M, Villemaire P, Skakun R, Guindon L. 2022. Improved k-NN mapping of forest attributes in Northern Canada using spaceborne L-band SAR, multispectral and biomass of urban forests using LiDAR. Remote Sens. 8:339.
  • Błaszczak-Bąk W, Janicka J, Kozakiewicz T, Chudzikiewicz K, Bąk G. 2022. Methodology of calculating the number of trees based on ALS data for forestry applications for the area of samławki forest district. Remote Sens. 14(1):16.
  • Bolat F, Ürker O, Günlü A. 2022. Nonlinear height-diameter models for Hungarian oak (Quercus frainetto Ten.) in Dumanlı Forest Planning Unit, Çanakkale/Turkey. Aust J For Sci. 139(3):199–220.
  • Cha S, Jo HW, Kim M, Song C, Lee H, Park E, Lee WK. 2022. Application of deep learning algorithm for estimating stand volume in South Korea. J Appl Remote Sens. 16(2):024503.
  • Chong IG, Jun CH. 2005. Performance of some variable selection methods when multicollinearity is present. Chemometr İntellig Labor Syst. 78(1-2):103–112.
  • Chrysafis I, Mallinis G, Siachalou S, Patias P. 2017. Assessing the relationships between growing stock volume and Sentinel-2 imagery in a Mediterranean forest ecosystem. Remote Sens Lett. 8(6):508–517.
  • Chrysafis I, Mallinis G, Tsakiri M, Patias P. 2019. Evaluation of single-date and multi-seasonal spatial and spectral information of Sentinel-2 imagery to assess growing stock volume of a Mediterranean forest. Int J Appl Earth Obs Geoinf. 77:1–14.
  • Çil B. 2014. Bazı meşcere parametrelerinin farklı uydu görüntüleri yardımıyla tahmin edilmesi: Kelkit ve İğdir Planlama Birimi örneği. Trabzon: Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü. p. 72 s. Yüksek Lisans Tezi,
  • Eckert S. 2012. Improved forest biomass and carbon estimations using texture measures from WorldView-2 satellite data. Remote Sens. 4(4):810–829.
  • Ercanlı İ. 2020. Ankara Orman Bölge Müdürlüğü Anadolu karaçamı meşcereleri için tek ağaç gövde çapı ve gövde hacminin uyumlu gövde çapı denklemleri ve yapay sinir ağları ile tahmin edilmesi. TÜBİTAK 119O061 nolu 1002 projesi.
  • Fassnacht FE, Hartig F, Latifi H, Berger C, Hernández J, Corvalán P, Koch B. 2014. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens Environ. 154:102–114.
  • Fitzgerald G, Rodriguez D, O’Leary G. 2010. Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index – the Canopy Chlorophyll Content Index (CCCI). Field Crops Res. 18–324.
  • Gama FF, Dos Santos JR, Mura JC. 2010. Eucalyptus biomass and volume estimation using interferometric and polarimetric SAR data. Remote Sens. 2(4):939–956.
  • García-Gutiérrez J, González-Ferreiro E, Mateos-García D, Riquelme-Santos JC. 2016. A preliminary study of the suitability of deep learning to improve LiDAR-derived biomass estimation. In: International Conference on Hybrid Artificial Intelligence Systems (pp. 588–596). Cham: Springer.
  • Giannico V, Lafortezza R, John R, Sanesi G, Pesola L, Chen J. 2016. Estimating stand volume and above-ground LiDAR Data. Remote Sens. 14:1181.
  • Gitelson AA, Gritz U, Merzlyak MN. 2003. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 160(3):271–282.
  • Haboudane D, Miller JR, Pattey E, Zarco-Tejada PJ, Strachan IB. 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens. Environ. 90:337–352.
  • Hunt Jr ER, Rock BN. 1989. Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sens. Environ. 30(1):43–54.
  • Hyyppä J, Hyyppä H, Inkinen M, Engdahl M, Linko S, Zhu YH. 2000. Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. For Ecol Manage. 128(1-2):109–120.
  • Johnsson T. 1992. A procedure for stepwise regression analysis. Stat Pap. 33(1):21–29.
  • Kalıpsız A. 1963. Türkiye’de karaçam meşcerelerinin tabii bünyesi ve verim kudreti üzerine araştırmalar. İstanbul: OGM yayını; p. 141.
  • Kameyama S, Sugiura K. 2020. Estimating tree height and volume using unmanned aerial vehicle photography and SfM technology, with verification of result accuracy. Drones. 4(2):19.
  • Kaufman YJ, Tanre D. 1992. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 30(2):261–270.
  • Kayitakire F, Hamel C, Defourny P. 2006. Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery. Remote Sens Environ. 102(3-4):390–401.
  • Krause S, Sanders TGM, Mund JP, Greve K. 2019. UAV-based photogrammetric tree height measurement for intensive forest monitoring. Remote Sens. 11(7):758.
  • Kulawardhana RW, Popescu SC, Feagin RA. 2014. Fusion of lidar and multispectral data to quantify salt marsh carbon stocks. Remote Sens Environ. 154:345–357.
  • Lang N, Schindler K, Wegner J. 2019. Country-wide high-resolution vegetation height mapping with Sentinel-2. Remote Sens. Environ. 233:111347.
  • Liebermann H, Schuler JL, Strager MP, Henntz AK, Maxwell AE. 2018. Using unmanned aerial systems for deriving forest stand characteristics in mixed hardwoods of West Virginia. J Geospat Appl Nat Resour. 2(1):1–12.
  • Liu H, Shen X, Cao L, Yun T, Zhang Z, Fu X, Chen X, Liu F. 2021. Deep learning in forest structural parameter estimation using airborne LiDAR Data. IEEE J Sel Top Appl Earth Observ Remote Sens. 14:1603–1618.
  • Liu J, Wang X, Wang T. 2019. Classification of tree species and stock volume estimation in ground forest images using Deep Learning. Comput Electron Agric. 166:105012.
  • Long J, Lin H, Wang G, Sun H, Yan E. 2020. Estimating the growing stem volume of the planted forest using the general linear model and time series quad-polarimetric SAR ımages. Sensors. 20(14):3957.
  • Lu D, Mausel P, Brondı́zio E, Moran E. 2004. Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. For Ecol Manage. 198(1-3):149–167.
  • McFeeters SK. 1996. The use of Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17(7):1425–1432.
  • Meng J, Li S, Wang W, Liu Q, Xie S, Ma W. 2016. Estimation of forest structural diversity using the spectral and textural information derived from SPOT-5 satellite images. Remote Sens. 8(2):125.
  • Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F. 2015. e1071: misc Functions of the Department of Statistics, Probability Theory Group (Formerly: e 1071). TU Wien. R package version, 1.6-7.
  • Mohammadi J, Joibary SS, Yaghmaee F, Mahiny AS. 2010. Modelling forest stand volume and tree density using Landsat ETM + data. Int J Remote Sens. 31(11):2959–2975.
  • Mohsin AF, Suratman MN, Zakaria SAKY. 2021. Modelling of stand volume of Eucalyptus plantations using WorldView-2 Imagery in Sabah, Malaysia. ASM Sci J. 14(1):118–125.
  • Mora B, Wulder MA, White JC, Hobart G. 2013. Modeling stand height, volume, and biomass from very high spatial resolution satellite imagery and samples of airborne LiDAR. Remote Sens. 5(5):2308–2326.
  • Morin D, Planells M, Guyon D, Villard L, Mermoz S, Bouvet A, Thevenon H, Dejoux J, Toan TL, Dedieu G. 2019. Estimation and mapping of forest structure parameters from open access satellite images: development of a generic method with a study case on coniferous plantation. Remote Sens. 11(11):1275.
  • Mura M, Bottalico F, Giannetti F, Bertani R, Giannini R, Mancini M, Orlandini S, Travaglini D, Chirici G. 2018. Exploiting the capabilities of the Sentinel-2 multi spectral instrument for predicting growing stock volume in forest ecosystems. Int J Appl Earth Obs Geoinf. 66:126–134.
  • Narine LL, Popescu SC, Malambo L. 2019. Synergy of ICESat-2 and Landsat for mapping forest aboveground biomass with deep learning. Remote Sens. 11(12):1503.
  • Ogana FN, Ercanli I. 2022. Modelling height-diameter relationships in complex tropical rain forest ecosystems using deep learning algorithm. J For Res. 33(3):883–898.
  • Özdemir İ, Karnieli A. 2011. Predicting forest structural parameters using the image texture derived from WorldView-2 multispectral imagery in a dryland forest. Israel. International Journal of Applied Earth Observation and Geoinformation. 13(5):701–710.
  • Özkan UY, Demirel T. 2018. Estimation of forest stand parameters by using the spectral and textural features derived from digital aerial images. Appl Ecol Env Res. 16(3):3043–3060.
  • Özkan UY, Demirel T. 2021. The ınfluence of widow size on remote sensing-based prediction of forest structural variables. Ecol Process. 10(1):60.
  • Özkan UY. 2003. Uydu görüntüleri yardımıyla meşcere parametrelerinin kestirilmesi ve orman amenajmanında kullanılması olanakları İstanbul: İstanbul Üniversitesi, Orman Fakültesi, Fen Bilimleri Enstitüsü; p. 70. s., Yüksek lisans Tezi.
  • Pathak B, Barooah D. 2013. Texture analysis based on the gray-level co-occurrence matrix considering possible orientations. Int J Adv Res Electr Electron Instrum Eng. 2(9):4206–4212.
  • Rahlf J, Hauglin M, Astrup R, Breidenbach J. 2021. Timber volume estimation based on airborne laser scanning comparing the use of national forest inventory and forest management inventory data. Ann For Sci. 78(2):1–14.
  • Ray‐Mukherjee J, Nimon K, Mukherjee S, Morris DW, Slotow R, Hamer M. 2014. Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity. Methods Ecol Evol. 5(4):320–328.
  • Rodriguez-Galiano V, Sanchez-Castillo M, Chica-Olmo M, Chica-Rivas M. 2015. Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol Rev. 71:804–818.
  • Sačkov I, Scheer Ľ, Bucha T. 2019. Predicting forest stand variables from airborne LiDAR data using a tree detection method in Central European forests. Lesnicky Casopis. 65(3-4):191–197.
  • Sakıcı OE, Günlü A. 2018. Artificial intelligence applications for predicting some stand attributes using Landsat 8 OLI satellite data: a case study from Turkey. Appl Ecol Env Res. 16(4):5269–5285.
  • Shataee S. 2013. Forest attributes estimation using aerial laser scanner and TM data. Forest Syst. 22(3):484–496.
  • Sheridan RD, Popescu SC, Gatziolis D, Morgan CL, Ku NW. 2014. Modeling forest aboveground biomass and volume using airborne LiDAR metrics and forest inventory and analysis data in the Pacific Northwest. Remote Sens. 7(1):229–255.
  • Spies TA. 1998. Forest structure: a key to the ecosystem. Northwest Sci. 72:34–36.
  • Steinmann K, Mandallaz D, Ginzler C, Lanz A. 2013. Small area estimations of proportion of forest and timber volume combining Lidar data and stereo aerial images with terrestrial data. Scand J For Res. 28(4):373–385.
  • St-Onge B, Hu Y, Vega C. 2008. Mapping the height and above-ground biomass of a mixed forest using LiDAR and stereo Ikonos images. Int J Remote Sens. 29(5):1277–1294.
  • Taylor KE. 2001. Summarizing multiple aspects of model performance in a single diagram. J Geophys Res. 106(D7):7183–7192.
  • Turgut R, Günlü A. 2022. Estimating aboveground biomass using Landsat 8 OLI satellite image in pure Crimean pine (Pinus nigra JF Arnold subsp. pallasiana (Lamb.) Holmboe) stands: a case from Turkey. Geocarto Int. 37(3):720–734.
  • USGS 2000. USGS earth explorer. https://earthexplorer.usgs.gov/.
  • Wallner A, Elatawneh A, Schneider T, Knoke T. 2015. Estimation of forest structural information using RapidEye satellite data. Forestry: Int J For Res. 88(1):96–107.
  • Wang F, Huang J, Tang Y, Wang X. 2007. New vegetation index and its application in estimating leaf area index of rice. Rice Sci. 14(3):195–203.
  • Wu C, Shen H, Shen A, Deng J, Gan M, Zhu J, Xu H, Wang K. 2016. Comparison of machine-learning methods for above-ground biomass estimation based on Landsat imagery. J Appl Remote Sens. 10(3):035010.
  • Xie S, Wang W, Meng J, Zhao T, Huang G. 2017. Estimation of forest stand parameters using SPOT-5 satellite images and topographic information. Preprints. https://doi.org/10.20944/preprints201710.0017.v1
  • Yazdani M, Jouibary SS, Mohammadi J, Maghsoudi Y. 2020. Comparison of different machine learning and regression methods for estimation and mapping of forest stand attributes using ALOS/PALSAR data in complex Hyrcanian forests. J Appl Rem Sens. 14(02):1.
  • Zhang L, Shao Z, Liu J, Cheng Q. 2019. Deep learning based retrieval of forest aboveground biomass from combined LiDAR and Landsat 8 data. Remote Sens. 11(12):1459.
  • Zhao Q, Wang F, Zhao J, Zhou J, Yu S, Zhao Z. 2018. Estimating forest canopy cover in black locust (Robinia pseudoacacia L.) plantations on the loess plateau using random forest. Forests. 9(10):623.
  • Zhao Q, Yu S, Zhao F, Tian L, Zhao Z. 2019. Comparison of machine learning algorithms for forest parameter estimations and application for forest quality assessments. For Ecol Manage. 434:224–234.
  • Zheng G, Li X, Zhou L, Yang J, Ren L, Chen P, Zhang H, Lou X. 2018. Development of a gray-level co-occurrence matrix-based texture orientation estimation method and its application in sea surface wind direction retrieval from SAR imagery. IEEE Trans Geosci Remote Sens. 56(9):5244–5260.
  • Zhou J, Guo RY, Sun M, Di TT, Wang S, Zhai J, Zhao Z. 2017. The effects of GLCM parameters on LAI estimation using texture values from Quickbird Satellite Imagery. Sci Rep. 7(1):1–12.
  • Zhou J, Zhou Z, Zhao Q, Han Z, Wang P, Xu J, Dian Y. 2020. Evaluation of different algorithms for estimating the growing stock volume of Pinus massoniana plantations using spectral and spatial information from a SPOT6 image. Forests. 11(5):540.