976
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A method for remote sensing image classification by combining Pixel Neighbourhood Similarity and optimal feature combination

, , , , &
Article: 2158948 | Received 06 Jun 2022, Accepted 09 Dec 2022, Published online: 03 Jan 2023

References

  • Bayarjargal Y, Karnieli A, Bayasgalan M, Khudulmur S, Gandush C, Tucker C. 2006. A comparative study of NOAA–AVHRR derived drought indices using change vector analysis. Remote Sens Environ. 105(1):9–22.
  • Ben Brick AS, Laroussi N, Mesrati H, Kefi R, Bchetnia M, Lasram K, Ben Halim N, Romdhane L, Ouragini H, Marrakchi S, et al. 2014. Mutational founder effect in recessive dystrophic epidermolysis bullosa families from Southern Tunisia. Arch Dermatol Res. 306(4):405–411.
  • Benediktsson JA, Pesaresi M, Arnason K. 2003. Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Trans Geosci Remote Sens. 41(9):1940–1949.
  • Bolourchi P, Demirel H, Uysal S. 2018. Entropy‐score‐based feature selection for moment‐based SAR image classification. Electron Lett. 54(9):593–595.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32.
  • Cai Y, Guan K, Peng J, Wang S, Seifert C, Wardlow B, Li Z. 2018. A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach. Remote Sens Environ. 210:35–47.
  • Chavez PS, Berlin GL, Sower LB. 1982. Statistical method for selecting Landsat MSS ratios. J Appl Photogr Eng. 8(1):23–30.
  • Chen N, Yu L, Zhang X, Shen Y, Zeng L, Hu Q, Niyogi D. 2020. Mapping paddy rice fields by combining multi-temporal vegetation index and synthetic aperture radar remote sensing data using Google Earth Engine machine learning platform. Remote Sens. 12(18):2992–3008.
  • Chen Y, He X, Xu J, Zhang R, Lu Y. 2020. Scattering feature set optimization and polarimetric SAR classification using object-oriented RF-SFS algorithm in coastal Wetlands. Remote Sens. 12(3):407–423.
  • Chen Y, Luo Z, Kong L. 2021. ℓ2,0-norm based selection and estimation for multivariate generalized linear models. J Multivariate Anal. 185:104782–104799.
  • Du Q. 2007. Modified Fisher’s linear discriminant analysis for hyperspectral imagery. IEEE Geosci Remote Sens Lett. 4(4):503–507.
  • Duan L, Yang S, Zhang D. 2020. The optimization of feature selection based on chaos clustering strategy and niche particle swarm optimization. Math Prob Eng. 2020:1–8.
  • Freeman C, Kulić D, Basir O. 2015. An evaluation of classifier-specific filter measure performance for feature selection. Pattern Recognit. 48(5):1812–1826.
  • Haralick RM, Shanmugam K, Dinstein I. 1973. Textural features for image classification. IEEE Trans Syst Man Cybern. SMC-3(6):610–621.
  • Hua Y, Wang X, Li Y, Xu P, Xia W. 2021. Dynamic development of landslide susceptibility based on slope unit and deep neural networks. Landslides. 18(1):281–302.
  • Huang X, Zhang L. 2008. An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery. IEEE Trans Geosci Remote Sens. 46(12):4173–4185.
  • Imani M, Ghassemian H. 2015. Feature extraction using median–mean and feature line embedding. Int J Remote Sens. 36(17):4297–4314.
  • Immitzer M, Neuwirth M, Böck S, Brenner H, Vuolo F, Atzberger C. 2019. Optimal input features for tree species classification in central Europe based on multi-temporal sentinel-2 data. Remote Sens. 11(22):2599–2621.
  • Jeppson KO. 1994. Modeling the influence of the transistor gain ratio and the input-to-output coupling capacitance on the CMOS inverter delay. IEEE J Solid-State Circuits. 29(6):646–654.
  • Kondratyev KY, Pokrovsky OM. 1979. A factor analysis approach to optimal selection of spectral intervals for multipurpose experiments in remote sensing of the environment and earth resources. Remote Sens Environ. 8(1):3–10.
  • Kruse FA, Lefkoff AB, Boardman JW, Heidebrecht KB, Shapiro AT, Barloon PJ, Goetz AFH. 1993. The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sens Environ. 44(2–3):145–163.
  • Kupidura P. 2019. The comparison of different methods of texture analysis for their efficacy for land use classification in satellite imagery. Remote Sens. 11(10):1233–1253.
  • Lee C, Lee GG. 2006. Information gain and divergence-based feature selection for machine learning-based text categorization. Inf Process Manag. 42(1):155–165.
  • Lee J, Kim D-W. 2015. Memetic feature selection algorithm for multi-label classification. Inf Sci. 293:80–96.
  • Li LH, Jia XM, Zhang JT. 2014. Research on extraction and assistant classification of remote sensing for texture feature. AMR. 1073–1076:1881–1885.
  • Li Z, Zhu Q, Wang Y, Zhang Z, Zhou X, Lin A, Fan J. 2020. Feature extraction method based on spectral dimensional edge preservation filtering for hyperspectral image classification. Int J Remote Sens. 41(1):90–113.
  • Luo X, Du H, Zhou G, Li X, Mao F, Zhu D, Xu Y, Zhang M, He S, Huang Z. 2021. A novel query strategy-based rank batch-mode active learning method for high-resolution remote sensing image classification. Remote Sens. 13(11):2234.
  • Prasad S, Bruce LM. 2008. Limitations of principal components analysis for hyperspectral target recognition. IEEE Geosci Remote Sens Lett. 5(4):625–629.
  • Qian Y, Ye M, Zhou J. 2013. Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features. IEEE Trans Geosci Remote Sens. 51(4):2276–2291.
  • Qu J-H, Cheng J-H, Sun D-W, Pu H, Wang Q-J, Ma J. 2015. Discrimination of shelled shrimp (Metapenaeus ensis) among fresh, frozen-thawed and cold-stored by hyperspectral imaging technique. LWT - Food Sci Technol. 62(1):202–209.
  • Rastogi K, Bodani P, Sharma SA. 2022. Automatic building footprint extraction from very high-resolution imagery using deep learning techniques. Geocarto Int. 37(5):1501–1513.
  • Saha S, Rajasekaran S, Ramprasad R. 2015. Novel randomized feature selection algorithms. Int J Found Comput Sci. 26(03):321–341.
  • Shukla AK, Singh P, Vardhan M. 2019. A new hybrid wrapper TLBO and SA with SVM approach for gene expression data. Inf Sci. 503:238–254.
  • Sitokonstantinou V, Papoutsis I, Kontoes C, Arnal A, Andrés AP, Zurbano JA. 2018. Scalable parcel-based crop identification scheme using sentinel-2 data time-series for the monitoring of the Common Agricultural Policy. Remote Sens. 10(6):911–931.
  • Song X, Yan C. 2014. Land cover change detection using segment similarity of spectrum vector based on knowledge base. Acta Ecol Sinica. 34(24):7175–7180.
  • Sonnenschein R, Kuemmerle T, Udelhoven T, Stellmes M, Hostert P. 2011. Differences in Landsat-based trend analyses in drylands due to the choice of vegetation estimate. Remote Sens Environ. 115(6):1408–1420.
  • South S, Qi J, Lusch DP. 2004. Optimal classification methods for mapping agricultural tillage practices. Remote Sens Environ. 91(1):90–97.
  • Taghizadeh-Mehrjardi R, Toomanian N, Khavaninzadeh AR, Jafari A, Triantafilis J. 2016. Predicting and mapping of soil particle-size fractions with adaptive neuro-fuzzy inference and ant colony optimization in central Iran. Eur J Soil Sci. 67(6):707–725.
  • Tan C, Chen H, Lin Z, Wu T. 2019. Category identification of textile fibers based on near-infrared spectroscopy combined with data description algorithms. Vib Spectrosc. 100:71–78.
  • Tong QX, Zhang B, Zheng FL. 2006. Hyperspectral remote sensing. Beijing, China: higher Education Press.
  • Toure SI, Stow DA, Shih H-c, Weeks J, Lopez-Carr D. 2018. Land cover and land use change analysis using multi-spatial resolution data and object-based image analysis. Remote Sens Environ. 210:259–268.
  • Uddin MP, Mamun MA, Afjal MI, Hossain MA. 2021a. Information-theoretic feature selection with segmentation-based folded principal component analysis (PCA) for hyperspectral image classification. Int J Remote Sens. 42(1):286–321.
  • Uddin MP, Mamun MA, Hossain MA. 2019. Effective feature extraction through segmentation-based folded-PCA for hyperspectral image classification. Int J Remote Sens. 40(18):7190–7220.
  • Uddin MP, Mamun MA, Hossain MA. 2021b. PCA-based feature reduction for hyperspectral remote sensing image classification. IETE Tech Rev. 38(4):377–396.
  • Vanniel T, McVicar T, Datt B. 2005. On the relationship between training sample size and data dimensionality: monte Carlo analysis of broadband multi-temporal classification. Remote Sens Environ. 98(4):468–480.
  • Villa A, Benediktsson JA, Chanussot J, Jutten C. 2011. Hyperspectral image classification with independent component discriminant analysis. IEEE Trans Geosci Remote Sens. 49(12):4865–4876.
  • Wan Y, Ma A, Zhang L, Zhong Y. 2021. Multiobjective sine cosine algorithm for remote sensing image spatial-spectral clustering. p. 1–15.
  • Wu B, Chen C, Kechadi TM, Sun L. 2013. A comparative evaluation of filter-based feature selection methods for hyper-spectral band selection. Int J Remote Sens. 34(22):7974–7990.
  • Xiuping Jia M, Richards JA. 1999. Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification. IEEE Trans Geosci Remote Sens. 37(1):538–542.
  • Xu Y, Wang J, Xia A, Zhang K, Dong X, Wu K, Wu G. 2019. Continuous wavelet analysis of leaf reflectance improves classification accuracy of mangrove species. Remote Sens. 11(3):254–270.
  • Yang S, Gu L, Li X, Jiang T, Ren R. 2020. Crop classification method based on optimal feature selection and hybrid CNN-RF networks for multi-temporal remote sensing imagery. Remote Sens. 12(19):3119–3142.
  • Yang X, Qin Q, Grussenmeyer P, Koehl M. 2018. Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery. Remote Sens Environ. 219:259–270.
  • Zhang L,Zhang Q,Du B,Huang X,Tang YY,Tao D. 2018. Simultaneous spectral-spatial feature selection and extraction for hyperspectral images. IEEE Trans Cybern. 48(1):16–28.
  • Zhang K, Chen Y, Zhang B, Hu J, Wang W. 2022. A multitemporal mountain rice identification and extraction method based on the optimal feature combination and machine learning. Remote Sens. 14(20):5096.
  • Zhang L, Zhu X, Zhang L, Du B. 2016. Multidomain subspace classification for hyperspectral images. IEEE Trans Geosci Remote Sens. 54(10):6138–6150.
  • Zhang P, He H, Gao L. 2019. A nonlinear and explicit framework of supervised manifold-feature extraction for hyperspectral image classification. Neurocomputing. 337:315–324.
  • Zhao J, Fang Y, Zhang M, Dong Y. 2020. Identification of remote sensing-based land cover types combining nearest-neighbor classification and SEaTH algorithm. J Indian Soc Remote Sens. 48(7):1007–1020.
  • Zhao W, Du S. 2016. Spectral–spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Trans Geosci Remote Sens. 54(8):4544–4554.
  • Zhou Q, Zhou H, Li T. 2016. Cost-sensitive feature selection using random forest: selecting low-cost subsets of informative features. Knowl-Based Syst. 95:1–11.
  • Zhu J, Pan Z, Wang H, Huang P, Sun J, Qin F, Liu Z. 2019a. An improved multi-temporal and multi-feature tea plantation identification method using sentinel-2 imagery. Sensor. 19(9):2087–2103.
  • Zhu J, Pan Z, Wang H, Huang P, Sun J, Qin F, Liu Z. 2019b. An improved multi-temporal and multi-feature tea plantation identification method using sentinel-2 imagery. Sensors (Basel). 19(9):2087.
  • Zhu Z, Jia S, He S, Sun Y, Ji Z, Shen L. 2015. Three-dimensional Gabor feature extraction for hyperspectral imagery classification using a memetic framework. Inf Sci. 298:274–287.