1,593
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Consecutive DInSAR and well based on the law of material conservation between land surface pressure and ground water to observe land subsidence

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Article: 2159069 | Received 30 May 2022, Accepted 09 Dec 2022, Published online: 28 Dec 2022

References

  • Abidin HZ, Andreas H, Gumilar I, Sidiq TP, Fukuda Y. 2013. Land subsidence in coastal city of Semarang (Indonesia): Characteristics, impacts and causes. Geomatics, Nat Hazards, and Risk. 4(3):226–240.
  • Agarwal V, Kumar A, Gee D, Grebby S, Gomes RL, Marsh S. 2021. Comparative study of groundwater-induced subsidence for London and Delhi using PSInSAR. Remote Sensing. 13(23):4741.
  • Basic plan. 2022. Basic plan on the advancement of utilizing geospatial information, 2022. https://www.gsi.go.jp/kokusaikoryu/kokusaikoryu-e30004.html.
  • Basic Policy. 2021. Basic policy on economic and fiscal management and reform. https://www5.cao.go.jp/keizai1/basicpolicies-e.html.
  • Castellazzi P, Garfias J, Martel R, Brouard C, Rivera A. 2017. InSAR to support sustainable urbanization over compacting aquifers: the case of Toluca Valley. Mexico. Int J Appl Earth Obs Geoinf. 63:33–44.
  • Chen YA, Chang CP, Hung WC, Yen JY, Lu CH, Hwang C. 2021. Space-time evolutions of land subsidence in the choushui river alluvial fan (Taiwan) from multiple-sensor observations. Remote Sens. 13:1–21.
  • Figueroa-Miranda S, Tuxpan-Vargas J, Ramos-Leal JA, Hernández-Madrigal VM, Villaseñor-Reyes CI. 2018. Land subsidence by groundwater over-exploitation from aquifers in tectonic valleys of Central Mexico: a review. Eng Geol. 246:91–106.
  • Foroughnia F, Nemati S, Maghsoudi Y, Perissin D. 2019. An iterative PS-InSAR method for the analysis of large spatio-temporal baseline data stacks for land subsidence estimation. Int J Appl Earth Obs Geoinf. 74:248–258.
  • Herrera-García G, Ezquerro P, Tomás R, Béjar-Pizarro M, López-Vinielles J, Rossi M, Mateos RM, Carreón-Freyre D, Lambert J, Teatini P, et al. 2021. Mapping the global threat of land subsidence. Science. 371(6524):34–36.
  • Higgins SA. 2016. Review: advances in delta-subsidence research using satellite methods. Hydrogeol J. 24(3):587–600.
  • Industrial water. 2022. Use of industrial water in Yokohama City. https://www.city.yokohama.lg.jp/.
  • Ishitsuka K, Matsuoka T. 2016. Accuracy evaluation of persistent scatterer interferometry using ALOS/PALSAR Data: a case study of surface displacement in the Kujukuri Plain, Chiba Prefecture. J Remote Sens Soc Japan. 36(4):328–337.
  • Lanari R, Lundgren P, Manzo M, Casu F. 2004. Satellite radar interferometry time series analysis of surface deformation for Los Angeles, California. Geophys Res Lett. 31(23):1–5.
  • Land Properties. 2022. Land properties in Japan. https://www.asahi.com/sp/special/saigai_jiban/.
  • Land subsidence. 2020. Compilation of aggregated data on land subsidence, 2020. http://www.env.go.jp/water/jiban/jiban_data.html.
  • Land subsidence. 2022a. the Keihin industrial area. https://www.jstage.jst.go.jp/browse/jjseg/1/1/_contents/-char/ja.
  • Land subsidence. 2022b. Land subsidence observation system. https://www.nies.go.jp/kanko/news/10/index.html.
  • Land subsidence. 2022c. Land subsidence survey results in Kanagawa Prefecture. https://www.pref.kanagawa.jp/index.html.
  • Land subsidence. 2022d. Overview of land subsidence nationwide, 2021. https://www.env.go.jp/water/jiban/chinka.html.
  • Ma P, Wang W, Zhang B, Wang J, Shi G, Huang G, Chen F, Jiang L, Lin H. 2019. Remotely sensing large- and small-scale ground subsidence: a case study of the Guangdong–Hong Kong–Macao Greater Bay Area of China. Remote Sens Environ. 232:111282.
  • Mahmoudpour M, Khamehchiyan M, Nikudel MR, Ghassemi MR. 2013. Characterization of regional land subsidence induced by groundwater withdrawals in Tehran, Iran. Geopersia. 3:49–62.L.
  • Marfai MA, King L. 2007. Monitoring land subsidence in Semarang. Environ Geol. 53(3):651–659.
  • Navarro-Hernández MI, Tomás R, Lopez-Sanchez JM, Cárdenas-Tristán A, Mallorquí JJ. 2020. Spatial analysis of land subsidence in the San Luis potosi valley induced by aquifer overexploitation using the coherent pixels technique (CPT) and sentinel-1 insar observation. Remote Sens. 12:1–23.
  • NGED. 2022. National Ground Environment Directory. http://www.env.go.jp/water/jiban/directory/index.html.
  • Nishi K, Kawai M, Nishi K, Eko B, Widodo J, Sumantyo JTS. 2022. Analysis of heavy rain and typhoons effect on the ground surface using DInSAR technique. Proc. - 2021 7th Asia-Pacific Conf. Synth. Aperture Radar, APSAR 2021, February 2022.
  • Nishi K, Tetuko SJ, Kawai M, Waqar MM, Xiangping C. 2021. Monitoring of land deformation in Kanagawa Prefecture using GNSS and C-band Sentinel-1 -based consecutive DInSAR. JIAS. 7(1):1–21.
  • Nonaka T, Asaka T, Iwashita K, Ogushi F. 2020. Evaluation of the trend of deformation around the kanto region estimated using the time series of PALSAR-2 data. Sensors (Switzerland). 20(2):339.
  • Normand JCL, Heggy E. 2015. InSAR assessment of surface deformations in urban coastal terrains associated with groundwater dynamics. IEEE Trans Geosci Remote Sensing. 53(12):6356–6371.
  • Orhan O. 2021. Monitoring of land subsidence due to excessive groundwater extraction using small baseline subset technique in Konya, Turkey. Environ Monit Assess. 193(4):1–17.
  • Osmano B, Dixon TH, Wdowinski S, Cabral-Cano E, Jiang Y. 2011. Mexico City subsidence observed with persistent scatterer InSAR. Int. J. Appl. Earth Obs. Geoinf. 13(1):1–12.
  • Pawluszek-Filipiak K, Borkowski A. 2020. Integration of DInSAR and SBAS techniques to determine mining-related deformations using Sentinel-1 data: the case study of rydultowy mine in Poland. Remote Sens. 12(2):242.
  • Precipitation. 2022. Precipitation information of Kanagawa prefecture. https://www.jma.go.jp/jma/indexe.html.
  • Qin Y, et al. 2018. Multi-scale analysis of the relationship between land subsidence and buildings: a case study in an eastern Beijing Urban Area using the PS-InSAR technique. Remote Sensing. 10(7):1006.
  • Sumantyo JTS, et al. 2012. Long-term consecutive DInSAR for volume change estimation of Land deformation. IEEE Trans Geosci Remote Sens. 50:259–270.
  • Sumantyo JTS, Perissin D, Widodo J, Andreas H, Wikantika K, Rohmaneo Darminto M, Kurniawan A, Nur Cahyadi M, Hariyanto T. 2022. Estimation of spouted hot mudflow current using continuity equation and DInSAR. IEEE Trans Geosci Remote Sens.60.
  • Suzuki M, Ito K, Abe S, et al. 2021. Study on application of global navigation satellite system (GNSS) to the land subsidence monitoring. Niigata, Japan: Niigata University.
  • Tobita M, et al. 2004. Seasonal variation of groundwater level and ground level around Tsukuba. J Geod Soc Japan. 50(1):27–37.
  • Tomokazu K, Yu M, Shinya Y. 2018. A prototype system for InSAR time series analysis. GSI J. 130:123–133.
  • Xu Y, Li T, Tang X, Zhang X, Fan H, Wang Y., 2022. Research on the applicability of DInSAR, stacking-InSAR and SBAS-InSAR for mining region subsidence detection in the datong coalfield. Remote Sens. 14(14):3314.
  • Yakista P, et al. 2017. Multi-temporal analysis for differential interferometry synthetic aperture radar (D-InSAR) and its application to monitoring land surface displacements. Int J Environ Geosci. 1(1):1–11.
  • Yokohama. 2022. Geology view of Yokohama city. https://wwwm.city.yokohama.lg.jp/yokohama/Portal.
  • Yokokura J, Tsuchiya N, Iijima N, Watanabe T, Mizuno N. 2019. Application of double tube method to Jakarta's land subsidence observation wells and its construction method: focusing on technology from user's perspective. JSCE.37: 369–372.
  • Zhang B, Wang R, Deng Y, Ma P, Lin H, Wang J. 2019. Mapping the Yellow River Delta land subsidence with multitemporal SAR interferometry by exploiting both persistent and distributed scatterers. ISPRS J Photogramm. 148:157–173.