1,989
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Estimation of yellow rust severity in wheat using visible and thermal imaging coupled with machine learning models

ORCID Icon, , & ORCID Icon
Article: 2160831 | Received 15 Mar 2022, Accepted 15 Dec 2022, Published online: 02 Jan 2023

References

  • Abdi H. 2003. Partial Least Squares (PLS) Regression. http://www.utdallas.edu/.
  • Ahmad IS, Reid JF. 1996. Evaluation of colour representations for maize images. J Agric Eng Res. 63(3):185–195.
  • Ali S, Rodriguez-Algaba J, Thach T, Sørensen CK, Hansen JG, Lassen P, Nazari K, Hodson DP, Justesen AF, Hovmøller MS. 2017. Yellow rust epidemics worldwide were caused by pathogen races from divergent genetic lineages. Front Plant Sci. 8:1057.
  • Alves KS, Guimarães M, Ascari JP, Queiroz MF, Alfenas RF, Mizubuti ESG, del Ponte EM. 2022. RGB-based phenotyping of foliar disease severity under controlled conditions. Trop Plant Pathol. 47(1):105–117.
  • Aschonitis VG, Lekakis E, Tziachris P, Doulgeris C, Papadopoulos F, Papadopoulos A, Papamichail D. 2019. A ranking system for comparing models’ performance combining multiple statistical criteria and scenarios: the case of reference evapotranspiration models. Environ Model Softw. 114:98–111.
  • Ashourloo D, Aghighi H, Matkan AA, Mobasheri MR, Rad AM. 2016. An investigation into machine learning regression techniques for the leaf rust disease detection using hyperspectral measurement. IEEE J Sel Top Appl Earth Observ Remote Sens. 9(9):4344–4351.
  • Ashourloo D, Mobasheri M, Huete A. 2014. Developing two spectral disease indices for detection of wheat leaf rust (Pucciniatriticina). Remote Sens. 6(6):4723–4740.
  • Bajwa AA, Farooq M, Al-Sadi AM, Nawaz A, Jabran K, Siddique KHM. 2020. Impact of climate change on biology and management of wheat pests. Crop Prot. 137:105304.
  • Banerjee K, Krishnan P, Das B. 2020. Thermal imaging and multivariate techniques for characterizing and screening wheat genotypes under water stress condition. Ecol Indic. 119:106829.
  • Bendig J, Yu K, Aasen H, Bolten A, Bennertz S, Broscheit J, Gnyp ML, Bareth G. 2015. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int J Appl Earth Obs Geoinf. 39:79–87.
  • Bhandari M, Ibrahim AMH, Xue Q, Jung J, Chang A, Rudd JC, Maeda M, Rajan N, Neely H, Landivar J. 2020. Assessing winter wheat foliage disease severity using aerial imagery acquired from small Unmanned Aerial Vehicle (UAV). Comput Electron Agric. 176:105665.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32.
  • Burgos-Artizzu XP, Ribeiro A, Guijarro M, Pajares G. 2011. Real-time image processing for crop/weed discrimination in maize fields. Comput Electron Agric. 75(2):337–346.
  • Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, Chen K. 2015. Xgboost: extreme gradient boosting. R Package Version 0.4-2, 1(4). p. 1–4.
  • Cheng HD, Jiang XH, Sun Y, Wang J. 2001. Color image segmentation: advances and prospects. Pattern Recognit. 34(12):2259–2281.
  • Chlingaryan A, Sukkarieh S, Whelan B. 2018. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review. Comput Electron Agric. 151:61–69.
  • Cohen B, Edan Y, Levi A, Alchanatis V. 2021. 33. Early detection of grapevine downy mildew using thermal imaging. In: Precision agriculture ’21. The Netherlands: Wageningen Academic Publishers. p. 283–290.
  • Das B, Manohara KK, Mahajan GR, Sahoo RN. 2020. Spectroscopy based novel spectral indices, PCA- and PLSR-coupled machine learning models for salinity stress phenotyping of rice. Spectrochim Acta A Mol Biomol Spectrosc. 229:117983.
  • FAO. 2020. World Food and Agriculture - Statistical Yearbook 2020. Rome. https://doi.org/10.4060/cb1329en
  • Feng Z, Song L, Duan J, He L, Zhang Y, Wei Y, Feng W. 2021. Monitoring wheat powdery mildew based on hyperspectral, thermal infrared, and RGB image data fusion. Sensors. 22(1):31.
  • Fix E, Hodges JL. 1989. Discriminatory analysis. Nonparametric discrimination: consistency properties. Int Stat Rev/Rev Int Stat. 57(3):238–247.
  • Friedman JH. 1991. Multivariate adaptive regression splines. Ann Statist. 19(1):1–67.
  • Friedman J, Hastie T, Tibshirani R. 2010. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 33(1):1–22.
  • Gitelson AA, Kaufman YJ, Stark R, Rundquist D. 2002. Novel algorithms for remote estimation of vegetation fraction. Remote Sens Environ. 80(1):76–87.
  • Guerrero JM, Pajares G, Montalvo M, Romeo J, Guijarro M. 2012. Support vector machines for crop/weeds identification in maize fields. Expert Syst Appl. 39(12):11149–11155.
  • Guijarro M, Pajares G, Riomoros I, Herrera PJ, Burgos-Artizzu XP, Ribeiro A. 2011. Automatic segmentation of relevant textures in agricultural images. Comput Electron Agric. 75(1):75–83.
  • Guo A, Huang W, Dong Y, Ye H, Ma H, Liu B, Wu W, Ren Y, Ruan C, Geng Y. 2021. Wheat yellow rust detection using UAV-based hyperspectral technology. Remote Sens. 13(1):123.
  • Guven G, Samkar H. 2019. Examination of dimension reduction performances of PLSR and PCR techniques in data with multicollinearity. Iran J Sci Technol Trans Sci. 43(3):969–978.
  • Hague T, Tillett ND, Wheeler H. 2006. Automated crop and weed monitoring in widely spaced cereals. Precision Agric. 7(1):21–32.
  • Han L, Yang G, Dai H, Xu B, Yang H, Feng H, Li Z, Yang X. 2019. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods. 15(1):10.
  • Haque I, Islam MA, Roy K, Rahaman MM, Shohan AA, Islam MS. 2022. Classifying pepper disease based on transfer learning: a deep learning approach. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC), 620–629.
  • Hashim IC, Shariff ARM, Bejo SK, Muharam F, Ahmad K, Hashim H. 2020. Application of thermal imaging for plant disease detection. In: IOP Conf Ser Earth Environ Sci. Vol. 540: Institute of Physics Publishing; p. 1–7. https://doi.org/10.1088/1755-1315/540/1/012052.
  • Hastie T, Tibshirani R, Friedman JH, Friedman JH. 2009. The elements of statistical learning: data mining, inference, and prediction. Vol. 2. New York: Springer.
  • Hossen MS, Haque I, Islam MS, Ahmed MT, Nime MJ, Islam MA. 2020. Deep learning based classification of papaya disease recognition. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), 945–951.
  • Islam MA, Islam MS, Hossen MS, Emon MU, Keya MS, Habib A. 2020. Machine learning based image classification of papaya disease recognition. 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), 1353–1360.
  • Islam MA, Shuvo MNR, Shamsojjaman M, Hasan S, Hossain MS, Khatun T. 2021. An automated convolutional neural network based approach for paddy leaf disease detection. IJACSA. 12(1):280–288.
  • Hunt ER, Cavigelli M, Daughtry CST, Mcmurtrey JE, Walthall CL. 2005. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precision Agric. 6(4):359–378.
  • Karaman M, Caglayan K, Yıldırım M. 2021. Theoretical and practical new approaches in cereal science and technology theoretical and practical new approaches in cereal science and technology. https://www.researchgate.net/publication/354849997.
  • Karatzoglou A, Meyer D, Hornik K. 2006. Support vector machines in R. J Stat Softw. 15(9):1–28.
  • Kataoka T, Kaneko T, Okamoto H, Hata S. 2003. Crop growth estimation system using machine vision. In: Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE. p. b1079–b1083.
  • Kawashima S, Nakatani M. 1998. An algorithm for estimating chlorophyll content in leaves using a video camera. Ann Bot. 81(1):49–54.
  • Kazmi W, Garcia-Ruiz FJ, Nielsen J, Rasmussen J, Jørgen Andersen H. 2015. Detecting creeping thistle in sugar beet fields using vegetation indices. Comput Electron Agric. 112:10–19.
  • Kuhn M, Weston S, Keefer C, Coulter N. 2012. Cubist models for regression. R Package Vignette Version 0.0, 18:480.
  • Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z, Kenkel B, Team RC. 2020. Package ‘caret’. R J. 223:7.
  • Lacaux JP, Tourre YM, Vignolles C, Ndione JA, Lafaye M. 2007. Classification of ponds from high-spatial resolution remote sensing: application to Rift Valley Fever epidemics in Senegal. Remote Sens Environ. 106(1):66–74.
  • Levin N, Ben‐Dor E, Singer A. 2005. A digital camera as a tool to measure colour indices and related properties of sandy soils in semi‐arid environments. Int J Remote Sens. 26(24):5475–5492.
  • Louhaichi M, Borman MM, Johnson DE. 2001. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int. 16(1):65–70.
  • Mahlein A-K. 2016. Plant disease detection by imaging sensors – parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis. 100(2):241–251.
  • Mao W, Wang Y, Wang Y. 2003. Real-time detection of between-row weeds using machine vision. 2003, Las Vegas, NV July 27–30, 2003. St. Joseph, MI: American Society of Agricultural and Biological Engineers.
  • Mevik B-H, Wehrens R. 2007. The pls package: principal component and partial least squares regression in R. J Stat Softw. 18(2):1–23.
  • Meyer G, Camargo Neto J, Jones DD, Hindman TW. 2004. Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images. Comput Electron Agric. 42(3):161–180.
  • Meyer GE, Hindman TW, Laksmi K, Meyer GE, DeShazer JA. 1999. Machine vision detection parameters for plant species identification. Prec Agric Biol Qual. 3543:327–335.
  • Mi Z, Zhang X, Su J, Han D, Su B. 2020. Wheat stripe rust grading by deep learning with attention mechanism and images from mobile devices. Front Plant Sci. 11:558126.
  • Mouazen AM, Kuang B, de Baerdemaeker J, Ramon H. 2010. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma. 158(1–2):23–31.
  • Nicolas H. 2004. Using remote sensing to determine of the date of a fungicide application on winter wheat. Crop Prot. 23(9):853–863.
  • Peterson RF, Campbell AB, Hannah AE. 1948. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res. 26c(5):496–500.
  • Quinlan JR. 1992. Learning with continuous classes. 5th Australian Joint Conference on Artificial Intelligence. Vol. 92. p. 343–348.
  • R Core T. 2020. R: a language and environment for statistical computing, version 4.0. 3. Software distributed by R Foundation for Statistical Computing.
  • Saberioon MM, Amin MSM, Anuar AR, Gholizadeh A, Wayayok A, Khairunniza-Bejo S. 2014. Assessment of rice leaf chlorophyll content using visible bands at different growth stages at both the leaf and canopy scale. Int J Appl Earth Obs Geoinf. 32:35–45.
  • Sancho-Adamson M, Trillas M, Bort J, Fernandez-Gallego J, Romanyà J. 2019. Use of RGB vegetation indexes in assessing early effects of Verticillium Wilt of Olive in asymptomatic plants in high and low fertility scenarios. Remote Sens. 11(6):607.
  • Shrivastava VK, Pradhan MK. 2021. Rice plant disease classification using color features: a machine learning paradigm. J Plant Pathol. 103(1):17–26.
  • Shruthi U, Nagaveni V, Raghavendra BK. 2019. A review on machine learning classification techniques for plant disease detection. In 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS). IEEE. p. 281–284.
  • Singh R, Krishnan P, Bharadwaj C, Das B. 2022a. Improving prediction of chickpea wilt severity using machine learning coupled with model combination techniques under field conditions. Ecol Inform. 73:101933.
  • Singh R, Krishnan P, Singh VK, Banerjee K. 2022b. Application of thermal and visible imaging to estimate stripe rust disease severity in wheat using supervised image classification methods. Ecol Inf. 71:101774.
  • Singh V, Sharma N, Singh S. 2020. A review of imaging techniques for plant disease detection. Artif Intell Agric. 4:229–242.
  • Singh VK, Sameriya KK, Rai A, Yadav M. 2020. Screening & phenotyping seedling and adult plant resistance to rusts in wheat. Pathophenotyping and Genome guided Characterization of Rust fungi infecting Wheat and other Cereals-A Training Manual. p. 57.
  • Sowmyalakshmi R, Jayasankar T, PiIllai VA, Subramaniyan K, Pustokhina Iv, Pustokhin DA, Shankar K. 2021. An optimal classification model for rice plant disease detection. Comput Mater Contin. 68(2):1751–1767.
  • Stoll M, Schultz HR, Baecker G, Berkelmann-Loehnertz B. 2008. Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery. Precision Agric. 9(6):407–417.
  • Su J, Liu C, Hu X, Xu X, Guo L, Chen WH. 2019. Spatio-temporal monitoring of wheat yellow rust using UAV multispectral imagery. Comput Electron Agric. 167:105035.
  • Su J, Yi D, Su B, Mi Z, Liu C, Hu X, Xu X, Guo L, Chen W-H. 2021. Aerial visual perception in smart farming: field study of wheat yellow rust monitoring. IEEE Trans Ind Inf. 17(3):2242–2249.
  • Vetal S, Khule RS. 2017. Tomato plant disease detection using image processing. Int J Adv Res Comput Commun Eng. 6(6):293–297.
  • Williams CKI, Barber D. 1998. Bayesian classification with Gaussian processes. IEEE Trans Pattern Anal Machine Intell. 20(12):1342–1351.
  • Woebbecke DM, Meyer GE, Von Bargen K, Mortensen DA. 1995. Color indices for weed identification under various soil, residue, and lighting conditions. Trans ASAE. 38(1):259–269.
  • Xu Y, Wang X, Sun H, Wang H, Zhan Y. 2010. Study of monitoring maize leaf nutrition based on image processing and spectral analysis. 2010 World Automation Congress. p. 465–468.
  • Yao Z, He D, Lei Y. 2018. Thermal imaging for early non destructive detection of wheat stripe rust. 2018 Detroit, Michigan July 29–August 1, 2018. St. Joseph, MI: American Society of Agricultural and Biological Engineers.
  • Yeo I, Johnson RA. 2000. A new family of power transformations to improve normality or symmetry. Biometrika. 87(4):954–959.
  • Yu R, Luo Y, Zhou Q, Zhang X, Wu D, Ren L. 2021. Early detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery. For Ecol Manage. 497:119493.
  • Zhang J, Huang Y, Pu R, Gonzalez-Moreno P, Yuan L, Wu K, Huang W. 2019. Monitoring plant diseases and pests through remote sensing technology: a review. Comput Electron Agric. 165:104943.
  • Zhou B, Elazab A, Bort J, Vergara O, Serret MD, Araus JL. 2015. Low-cost assessment of wheat resistance to yellow rust through conventional RGB images. Comput Electron Agric. 116:20–29.
  • Zhu W,Chen H,Ciechanowska I,Spaner D. 2018. Application of infrared thermal imaging for the rapid diagnosis of crop disease. IFAC-PapersOnLine. 51(17):424–430. 10.1016/j.ifacol.2018.08.184.