1,594
Views
4
CrossRef citations to date
0
Altmetric
Research Article

An integrated GIS-based multivariate adaptive regression splines-cat swarm optimization for improving the accuracy of wildfire susceptibility mapping

, , , , , & ORCID Icon show all
Article: 2167005 | Received 13 Jun 2022, Accepted 05 Jan 2023, Published online: 31 Jan 2023

References

  • Abedi Gheshlaghi H, Feizizadeh B, Blaschke T. 2020. GIS-based forest fire risk mapping using the analytical network process and fuzzy logic. J Environ Plann Manage. 63(3):481–499.
  • Adab H, Kanniah KD, Solaimani K. 2013. Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Nat Hazards. 65(3):1723–1743.
  • Ahmed AM, Rashid TA, Saeed SAM. 2020. Cat swarm optimization algorithm: a survey and performance evaluation. Comput Intell Neurosci. 2020:4854895.
  • Argañaraz JP, Pizarro GG, Zak M, Landi MA, Bellis LM. 2015. Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina. Sci Total Environ. 520:1–12.
  • Arndt N, Vacik H, Koch V, Arpaci A, Gossow H. 2013. Modeling human-caused forest fire ignition for assessing forest fire danger in Austria. iForest. 6(6):315–325.
  • Bahrami M, Bozorg-Haddad O, Chu X. 2018. Application of cat swarm optimization algorithm for optimal reservoir operation. J Irrig Drain Eng. 144(1):04017057.
  • Bahrami M, Bozorg-Haddad O, Chu X. 2018. Cat swarm optimization (CSO) algorithm. In Advanced optimization by nature-inspired algorithms. Singapore: Springer; p. 9–18.
  • Baratloo A, Rahmati F, Forouzanfar MM, Hashemi B, Motamedi M, Safari S. 2015. Evaluation of performance indexes of emergency department. Iran J Emerg Med. 2(1):33–38.
  • Bateni SM, Vosoughifar HR, Truce B, Jeng DS. 2019. Estimation of clear-water local scour at pile groups using genetic expression programming and multivariate adaptive regression splines. J Waterway, Port, Coastal, Ocean Eng. 145(1):04018029.
  • Bui DT, Khosravi K, Tiefenbacher J, Nguyen H, Kazakis N. 2020. Improving prediction of water quality indices using novel hybrid machine-learning algorithms. Sci Total Environ. 721:137612.
  • Bax V, Francesconi W. 2018. Environmental predictors of forest change: an analysis of natural predisposition to deforestation in the tropical Andes region, Peru. Appl Geogr. 91:99–110.
  • Bui DT, Bui QT, Nguyen QP, Pradhan B, Nampak H, Trinh PT. 2017. A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agric For Meteorol. 233:32–44.
  • Chandra S. 2005. Application of remote sensing and GIS technology in forest fire risk modeling and management of forest fires: a case study in the garhwal himalayan region. In Geo-information for disaster management. Berlin, Heidelberg: Springer; p. 1239–1254.
  • Chuvieco E, Congalton RG. 1989. Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote Sens Environ. 29(2):147–159.
  • Chu SC, Tsai PW. 2007. Computational intelligence based on the behavior of cats. Int J Innov Comput Inf Control. 3(1):163–173.
  • Costache R, Bui DT. 2020. Identification of areas prone to flash-flood phenomena using multiple-criteria decision-making, bivariate statistics, machine learning and their ensembles. Sci Total Environ. 712:136492.
  • Costafreda-Aumedes S, Vega-Garcia C, Comas C. 2018. Improving fire season definition by optimized temporal modelling of daily human-caused ignitions. J Environ Manage. 217:90–99.
  • De Moel H, van Vliet M, Aerts JC. 2014. Evaluating the effect of flood damage-reducing measures: a case study of the unembanked area of Rotterdam, the Netherlands. Reg Environ Change. 14(3):895–908.
  • Dodangeh E, Choubin B, Eigdir AN, Nabipour N, Panahi M, Shamshirband S, Mosavi A. 2020. Integrated machine learning methods with resampling algorithms for flood susceptibility prediction. Sci Total Environ. 705:135983.
  • Eskandari S, Pourghasemi HR, Tiefenbacher JP. 2020. Relations of land cover, topography, and climate to fire occurrence in natural regions of Iran: Applying new data mining techniques for modeling and mapping fire danger. Forest Ecol Manag. 473, 118338.
  • Fallah-Zazuli M, Vafaeinejad A, Alesheykh AA, Modiri M, Aghamohammadi H. 2019. Mapping landslide susceptibility in the Zagros Mountains, Iran: a comparative study of different data mining models. Earth Sci Inform. 12(4):615–628.
  • Friedman JH. 1991. Multivariate adaptive regression splines. Ann. Stat. 19(1):1–67.
  • Ghaemi A, Rezaie-Balf M, Adamowski J, Kisi O, Quilty J. 2019. On the applicability of maximum overlap discrete wavelet transform integrated with MARS and M5 model tree for monthly pan evaporation prediction. Agric For Meteorol. 278:107647.
  • Ghavidel Y, Farajzadeh M, Khaleghi Babaei M. 2016. Synoptic backgrounds of the widest wildfire in Mazandaran Province of Iran during December 11–13, 2010. Meteorol Atmos Phys. 128(6):763–777.
  • Gholamnia K, Gudiyangada Nachappa T, Ghorbanzadeh O, Blaschke T. 2020. Comparisons of diverse machine learning approaches for wildfire susceptibility mapping. Symmetry. 12(4):604.
  • Ghorbanzadeh O, Blaschke T, Gholamnia K, Aryal J. 2019. Forest fire susceptibility and risk mapping using social/infrastructural vulnerability and environmental variables. Fire. 2(3):50.
  • Gigović L, Pourghasemi HR, Drobnjak S, Bai S. 2019. Testing a new ensemble model based on SVM and random forest in forest fire susceptibility assessment and its mapping in Serbia’s Tara National Park. Forests. 10(5):408.
  • Heddam S, Kisi O. 2018. Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree. J Hydrol. 559:499–509.
  • Herawati H, Santoso H. 2011. Tropical forest susceptibility to and risk of fire under changing climate: a review of fire nature, policy and institutions in Indonesia. For Policy Econ. 13(4):227–233.
  • Hong H, Naghibi SA, Moradi Dashtpagerdi M, Pourghasemi HR, Chen W. 2017. A comparative assessment between linear and quadratic discriminant analyses (LDA-QDA) with frequency ratio and weights-of-evidence models for forest fire susceptibility mapping in China. Arab J Geosci. 10(7):1–14.
  • Hosseini FS, Choubin B, Mosavi A, Nabipour N, Shamshirband S, Darabi H, Haghighi AT. 2020. Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: application of the simulated annealing feature selection method. Sci Total Environ. 711:135161.
  • Huebner K, Lindo Z, Lechowicz MJ. 2012. Post-fire succession of collembolan communities in a northern hardwood forest. Eur J Soil Biol. 48:59–65.
  • Jaafari A, Zenner EK, Pham BT. 2018. Wildfire spatial pattern analysis in the Zagros Mountains, Iran: a comparative study of decision tree based classifiers. Ecol Inf. 43:200–211.
  • Jaafari A, Termeh SVR, Bui DT. 2019. Genetic and firefly metaheuristic algorithms for an optimized neuro-fuzzy prediction modeling of wildfire probability. J Environ Manage. 243:358–369.
  • Jaiswal RK, Mukherjee S, Raju KD, Saxena R. 2002. Forest fire risk zone mapping from satellite imagery and GIS. Int J Appl Earth Obs Geoinf. 4(1):1–10.
  • Kapoor P, Rani R, Jmit R. 2015. Efficient decision tree algorithm using J48 and reduced error pruning. Int J Eng Res Gen Sci. 3(3):1613–1621.
  • Keshtegar B, Mert C, Kisi O. 2018. Comparison of four heuristic regression techniques in solar radiation modeling: kriging method vs RSM, MARS and M5 model tree. Renewable Sustainable Energy Rev. 81:330–341.
  • Khosravi K, Pham BT, Chapi K, Shirzadi A, Shahabi H, Revhaug I, Prakash I, Tien Bui D. 2018. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci Total Environ. 627:744–755.
  • Khosravi K, Shahabi H, Pham BT, Adamowski J, Shirzadi A, Pradhan B, Dou J, Ly H-B, Gróf G, Ho HL, et al. 2019. A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. J Hydrol. 573:311–323.
  • Kuncheva LI. 2007. Combining pattern classifiers: methods and algorithms (kuncheva, li; 2004)[book review]. IEEE Trans Neural Netw. 18(3):964–964.
  • Littell JS, Peterson DL, Riley KL, Liu Y, Luce CH. 2016. A review of the relationships between drought and forest fire in the United States. Glob Chang Biol. 22(7):2353–2369.
  • Mabdeh AN, Al-Fugara AK, Khedher KM, Mabdeh M, Al-Shabeeb AR, Al-Adamat R. 2022. Forest fire susceptibility assessment and mapping using support vector regression and adaptive neuro-fuzzy inference system-based evolutionary algorithms. Sustainability. 14(15):9446.
  • Majumder P, Eldho TI. 2016. A new groundwater management model by coupling analytic element method and reverse particle tracking with cat swarm optimization. Water Resour Manage. 30(6):1953–1972.
  • Marchal J, Cumming SG, McIntire EJ. 2017. Land cover, more than monthly fire weather, drives fire-size distribution in Southern Québec forests: implications for fire risk management. PLoS One. 12(6):e0179294.
  • Mohamed WNHW, Salleh MNM, Omar AH. 2012, November. A comparative study of reduced error pruning method in decision tree algorithms. 2012 IEEE International Conference on Control System, Computing and Engineering. IEEE . p. 392–397.
  • Motazeh AG, Ashtiani EF, Baniasadi R, Choobar FM. 2013. Rating and mapping fire hazard in the hardwood Hyrcanian forests using GIS and expert choice software. Acknowledgement to Reviewers of the Manuscripts Submitted to Forestry Ideas in 2013. p. 141.
  • Naderpour, M., Rizeei, H. M., Khakzad, N., & Pradhan, B. (2019). Forest fire induced Natech risk assessment: a survey of geospatial technologies. Reliab Eng Syst Saf, 191, 106558.
  • Nasi, R., Dennis, R., Meijaard, E., Applegate, G., & Moore, P. (2002). Forest fire and biological diversity. UNASYLVA-FAO-, 36-40.
  • Nami MH, Jaafari A, Fallah M, Nabiuni S. 2018. Spatial prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS. Int J Environ Sci Technol. 15(2):373–384.
  • Orouskhani M, Mansouri M, Orouskhani Y, Teshnehlab M. 2013. A hybrid method of modified cat swarm optimization and gradient descent algorithm for training ANFIS. Int J Comp Intel Appl. 12(02):1350007.
  • Pham BT, Prakash I, Singh SK, Shirzadi A, Shahabi H, Tran T-T-T, Bui DT. 2019. Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: hybrid machine learning approaches. Catena. 175:203–218.
  • Podur J, Martell DL, Csillag F. 2003. Spatial patterns of lightning-caused forest fires in Ontario, 1976–1998. Ecol Modell. 164(1):1–20.
  • Pourtaghi ZS, Pourghasemi HR, Rossi M. 2015. Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran. Environ Earth Sci. 73(4):1515–1533.
  • Pourtaghi ZS, Pourghasemi HR, Aretano R, Semeraro T. 2016. Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques. Ecol Indic. 64:72–84.
  • Rahmati O, Pourghasemi HR. 2017. Identification of critical flood prone areas in data-scarce and ungauged regions: a comparison of three data mining models. Water Resour Manage. 31(5):1473–1487.
  • Razavi-Termeh SV, Sadeghi-Niaraki A, Choi SM. 2020. Gully erosion susceptibility mapping using artificial intelligence and statistical models. Geomatics Nat Hazards Risk. 11(1):821–844.
  • Rezaie-Balf M, Naganna SR, Ghaemi A, Deka PC. 2017. Wavelet coupled MARS and M5 Model Tree approaches for groundwater level forecasting. J Hydrol. 553:356–373.
  • Rezaie-Balf M, Maleki N, Kim S, Ashrafian A, Babaie-Miri F, Kim NW, Chung I-M, Alaghmand S. 2019. Forecasting daily solar radiation using CEEMDAN decomposition-based MARS model trained by crow search algorithm. Energies. 12(8):1416.
  • Rezaie-Balf M, Ghaemi A, Jun CS, Band S, Bateni SM. 2022. Towards an integrative, spatially-explicit modeling for flash floods susceptibility mapping based on remote sensing and flood inventory data in Southern Caspian Sea Littoral, Iran. Geocarto Int. 9:1–31.
  • Rodrigues M, Jiménez-Ruano A, Peña-Angulo D, De la Riva J. 2018. A comprehensive spatial-temporal analysis of driving factors of human-caused wildfires in Spain using geographically weighted logistic regression. J Environ Manage. 225:177–192.
  • Sachdeva S, Bhatia T, Verma AK. 2018. GIS-based evolutionary optimized gradient boosted decision trees for forest fire susceptibility mapping. Nat Hazards. 92(3):1399–1418.
  • Sajedi‐Hosseini F, Choubin B, Solaimani K, Cerdà A, Kavian A. 2018. Spatial prediction of soil erosion susceptibility using a fuzzy analytical network process: application of the fuzzy decision making trial and evaluation laboratory approach. Land Degrad Dev. 29(9):3092–3103.
  • Schoennagel T, Veblen T T, Romme WH. 2004. The interaction of fire, fuels, and climate across Rocky Mountain forests. BioScience. 54(7):661–676.
  • Schweizer DW, Cisneros R. 2017. Forest fire policy: change conventional thinking of smoke management to prioritize long-term air quality and public health. Air Qual Atmos Health. 10(1):33–36.
  • Shafizadeh-Moghadam H, Valavi R, Shahabi H, Chapi K, Shirzadi A. 2018. Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. J Environ Manage. 217:1–11.
  • Tehrany MS, Jones S, Shabani F, Martínez-Álvarez F, Bui DT. 2019. A novel ensemble modeling approach for the spatial prediction of tropical forest fire susceptibility using logitboost machine learning classifier and multi-source geospatial data. Theor Appl Climatol. 137(1–2):637–653.
  • Talebi A, Mahjoobi J, Dastorani MT, Moosavi V. 2017. Estimation of suspended sediment load using regression trees and model trees approaches (Case study: Hyderabad drainage basin in Iran). ISH J Hydraul Eng. 23(2):212–219.
  • Tallarida RJ, Murray RB. 1987. Chi-square test. Manual of pharmacologic calculations.
  • Tariq A, Shu H, Siddiqui S, Mousa BG, Munir I, Nasri A, Waqas H, Lu L, Baqa MF. 2021. Forest fire monitoring using spatial-statistical and Geo-spatial analysis of factors determining forest fire in Margalla Hills, Islamabad, Pakistan. Geomatics Nat Hazards Risk. 12(1):1212–1233.
  • Tariq A, Shu H, Li Q, Altan O, Khan MR, Baqa MF, Lu L. 2021. Quantitative analysis of forest fires in southeastern Australia using sar data. Remote Sens. 13(12):2386.
  • Tariq A, Shu H, Gagnon AS, Li Q, Mumtaz F, Hysa A, Siddique MA, Munir I. 2021. Assessing burned areas in wildfires and prescribed fires with spectral indices and SAR images in the Margalla Hills of Pakistan. Forests. 12(10):1371.
  • Tariq A, Shu H, Siddiqui S, Munir I, Sharifi A, Li Q, Lu L. 2022. Spatio-temporal analysis of forest fire events in the Margalla Hills, Islamabad, Pakistan using socio-economic and environmental variable data with machine learning methods. J For Res. 33(1):183–194.
  • Tehrany MS, Pradhan B, Mansor S, Ahmad N. 2015. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena. 125:91–101.
  • Termeh SVR, Kornejady A, Pourghasemi HR, Keesstra S. 2018. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Sci Total Environ. 615:438–451.
  • Tien Bui D, Le KTT, Nguyen VC, Le HD, Revhaug I. 2016. Tropical forest fire susceptibility mapping at the Cat Ba National Park Area, Hai Phong City, Vietnam, using GIS-based kernel logistic regression. Remote Sens. 8(4):347.
  • Tuyen TT, Jaafari A, Yen HPH, Nguyen-Thoi T, Phong TV, Nguyen HD, Van Le H, Phuong TTM, Nguyen SH, Prakash I, et al. 2021. Mapping forest fire susceptibility using spatially explicit ensemble models based on the locally weighted learning algorithm. Ecol Inf. 63:101292.
  • Tsangaratos P, Ilia I. 2016. Combining fuzzy logic and information theory for producing a landslide susceptibility model. Bull Geolog Soc Greece. 50(3):1737–1746.
  • Vadrevu KP, Eaturu A, Badarinath K. 2010. Fire risk evaluation using multicriteria analysis—a case study. Environ Monit Assess. 166(1–4):223–239.
  • Vahidnia MH, Alesheikh AA, Alimohammadi A, Hosseinali F. 2010. A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping. Comput Geosci. 36(9):1101–1114.
  • Van Boeckel TP, Thanapongtharm W, Robinson T, Biradar CM, Xiao X, Gilbert M. 2012. Improving risk models for avian influenza: the role of intensive poultry farming and flooded land during the 2004 Thailand epidemic. PLoS One. 7(11):e49528.
  • Vandenberg‐Rodes A, Moftakhari HR, AghaKouchak A, Shahbaba B, Sanders BF, Matthew RA. 2016. Projecting nuisance flooding in a warming climate using generalized linear models and Gaussian processes. J Geophys Res Oceans. 121(11):8008–8020.
  • Vilar, L., Gómez, I., Martínez-Vega, J., Echavarría, P., Riaño, D., & Martín, M. P. (2016). Multitemporal modelling of socio-economic wildfire drivers in central Spain between the 1980s and the 2000s: comparing generalized linear models to machine learning algorithms. PLoS One, 11(8), e0161344.
  • Wang, Y., Hong, H., Chen, W., Li, S., Panahi, M., Khosravi, K., … & Costache, R. (2019). Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. J Environ Manage, 247, 712–729.
  • Wu Z, He HS, Yang J, Liang Y. 2015. Defining fire environment zones in the boreal forests of northeastern China. Sci Total Environ. 518:106–116.
  • Yao J, Raffuse SM, Brauer M, Williamson GJ, Bowman DM, Johnston FH, Henderson SB. 2018. Predicting the minimum height of forest fire smoke within the atmosphere using machine learning and data from the CALIPSO satellite. Remote Sens Environ. 206:98–106.
  • Yusiong JPT. 2012. Optimizing artificial neural networks using cat swarm optimization algorithm. IJISA. 5(1):69–80.
  • Zhao G, Pang B, Xu Z, Yue J, Tu T. 2018. Mapping flood susceptibility in mountainous areas on a national scale in China. Sci Total Environ. 615:1133–1142.
  • Zawadzka J, Corstanje R, Harris J, Truckell I. 2020. Downscaling Landsat-8 land surface temperature maps in diverse urban landscapes using multivariate adaptive regression splines and very high resolution auxiliary data. Int J Digital Earth. 13(8):899–914.