1,105
Views
1
CrossRef citations to date
0
Altmetric
Research Article

An intrinsic vulnerability approach to assess an overburden alluvial aquifer exposure to sinkhole-prone area; results from a Central Iran case study

, , , , , & show all
Article: 2168068 | Received 29 Apr 2022, Accepted 09 Jan 2023, Published online: 19 Jan 2023

References

  • Abdelfattah MA, Shahid SA. 2007. A comparative characterization and classification of soils in Abu Dhabi coastal area in relation to arid and semi-arid conditions using USDA and FAO soil classification systems. Arid Land Res Manage. 21(3):245–271.
  • Adams B, Foster SSD. 1992. Land‐surface zoning for groundwater protection. Water Environ J. 6(3):312–319.
  • Akhavan Ghalibaf M, Razavi M. 2018. A simple criterion for zoning the ground hole occurrence in the basic studies of railway and power transmission networks in the county of Abarkouh, Yazd. grd. 06(02):49–79.
  • Ako AA, Shimada J, Hosono T, Ichiyanagi K, Nkeng GE, Fantong WY, Eyong GET, Roger NN. 2011. Evaluation of groundwater quality and its suitability for drinking, domestic, and agricultural uses in the Banana Plain (Mbanga, Njombe, Penja) of the Cameroon Volcanic Line. Environ Geochem Health. 33(6):559–575.
  • Alam F, Umar R, Ahmed S, Dar FA. 2014. A new model (DRASTIC-LU) for evaluating groundwater vulnerability in parts of central Ganga Plain, India. Arab J Geosci. 7(3):927–937.
  • Aller L. 1985. DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency.
  • Arzani N. 2003. The tragedy of ancient qanats in Kavir borders and arid lands, a case study from Abarkoh Plain, Central Iran. Iran Int J Sci. 4(1):73–86.
  • Arzani N. 2007. Playa-lake level fluctuation and recent sediments of a terminal Fan-Playa Fringe, Abarkoh Basin, Central Iran.
  • Asfaw D, Mengistu D. 2020. Modeling megech watershed aquifer vulnerability to pollution using modified DRASTIC model for sustainable groundwater management, Northwestern Ethiopia. Groundwater Sustainable Dev. 11:100375.
  • Ayed B, Jmal I, Sahal S, Bouri S. 2017. Assessment of groundwater vulnerability using a specific vulnerability method: case of Maritime Djeffara shallow aquifer (Southeastern Tunisia). Arab J Geosci. 10(12):1–14.
  • Balaji L, Saravanan R, Saravanan K, Sreemanthrarupini NA. 2021. Groundwater vulnerability mapping using the modified DRASTIC model: the metaheuristic algorithm approach. Environ Monit Assess. 193(1):1–19.
  • CDPH. 2010. California Department of Public Health Drinking Water Program. Perchlorate in Drinking Water. 2010; [accessed 2010 Mar 14]. http://www.cdph.ca.gov/certlic/drinkingwater/Pages/Perchlorate.aspx.
  • Demlie M, Wohnlich S, Gizaw B, Stichler W. 2007. Groundwater recharge in the Akaki catchment, central Ethiopia: evidence from environmental isotopes (δ18O, δ2H and 3H) and chloride mass balance. Hydrol Proc Intern J. 21(6):807–818.
  • Dregne HE. 2011. Soils of arid regions. Netherlands: Elsevier.
  • Drew D, Hötzl H, editors. 1999. Karst hydrogeology and human activities. Impacts, consequences and implications. Int Contrib Hydrogeol. 20:322.
  • Dubey DP, Tiwari RN, Dwivedi UMESH. 2006. Evaluation of pollution susceptibility of karst aquifers of Rewa Town (Madhya Pradesh) Using “DRASTIC” Approach. J Environ Sci Eng. 48(2):113–118.
  • Fornés JM, Hera ÁL, Llamas MR. 2005. The silent revolution in groundwater intensive use and its influence in Spain. Water Policy. 7(3):253–268.
  • Foster S. 1987. Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. TNO Proc Inf. 38:69–86.
  • Freeze RA, Cherry JA. 1979. Groundwater. New Jersey: Prentice-Hall.
  • Fritch TG, McKnight CL, Yelderman JC, Jr, Arnold JG. 2000. An aquifer vulnerability assessment of the Paluxy aquifer, central Texas, USA, using GIS and a modified DRASTIC approach. Environ Manage. 25(3):337–345.
  • Ghazavi R, Ebrahimi Z. 2015. Assessing groundwater vulnerability to contamination in an arid environment using DRASTIC and GOD models. Int J Environ Sci Technol. 12(9):2909–2918.
  • Gogu RC, Dassargues A. 2000. Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environ Geol. 39(6):549–559.
  • Hamza SM, Ahsan A, Imteaz MA, Rahman A, Mohammad TA, Ghazali AH. 2015. Accomplishment and subjectivity of GIS-based DRASTIC groundwater vulnerability assessment method: a review. Environ Earth Sci. 73(7):3063–3076.
  • Herlinger R, Viero AP. 2007. Groundwater vulnerability assessment in coastal plain of Rio Grande do Sul State, Brazil, using drastic and adsorption capacity of soils. Environ Geol. 52(5):819–829.
  • Iqbal J, Gorai AK, Katpatal YB, Pathak G. 2015. Development of GIS-based fuzzy pattern recognition model (modified DRASTIC model) for groundwater vulnerability to pollution assessment. Int J Environ Sci Technol. 12(10):3161–3174.
  • Jafari SM, Nikoo MR. 2019. Developing a fuzzy optimization model for groundwater risk assessment based on improved DRASTIC method. Environ Earth Sci. 78(4):109.
  • Karimi H, Taheri K. 2010. Hazards and mechanism of sinkholes on Kabudar Ahang and Famenin plains of Hamadan, Iran. Nat Hazards. 55(2):481–499.
  • Karimi D, Bahrami J, Mobaraki J, Missimer TM, Taheri K. 2022. Groundwater sustainability assessment based on socio-economic and environmental variables: a simple dynamic indicator-based approach. Hydrogeology J. 30(7):1963–1988.
  • Kavouri K, Plagnes V, Tremoulet J, Dörfliger N, Rejiba F, Marchet P. 2011. PaPRIKa: a method for estimating karst resource and source vulnerability—application to the Ouysse karst system (southwest France). Hydrogeol J. 19(2):339–353.
  • Kumar A, Pramod Krishna A. 2020. Groundwater vulnerability and contamination risk assessment using GIS-based modified DRASTIC-LU model in hard rock aquifer system in India. Geocarto International. 35(11):1149–1178.
  • Lad S, Ayachit R, Kadam A, Umrikar B. 2019. Groundwater vulnerability assessment using DRASTIC model: a comparative analysis of conventional, AHP, Fuzzy logic and frequency ratio method. Model Earth Syst Environ. 5(2):543–553.
  • Li R, Merchant JW. 2013. Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: a case study in North Dakota, USA. Sci Total Environ. 447:32–45.
  • Lodwick WA, Monson W, Svoboda L. 1990. Attribute error and sensitivity analysis of map operations in geographical informations systems: suitability analysis. Intern J Geograph Inform Syst. 4(4):413–428.
  • Majidipour F, Najafi SMB, Taheri K, Fathollahi J, Missimer TM. 2021. Index-based groundwater sustainability assessment in the socio-economic context: a case study in the Western Iran. Environ Manage. 67(4):648–666.
  • Maliva RG, Missimer TM. 2012. Arid lands water evaluation and management. Dordrecht, Netherlands: Springer; p. 1076.
  • Margat J. 1968. Vulnerabilite des nappes d’eau souterraine a la pollution: bases de la cartographie [Vulnerability of groundwater to pollution: database mapping]. BRGM Publication 68-SGL 198, BRGM, Orleans, France
  • Meraat M, Jafari H, Qishlaqi A. 2017. Assessing the source of nitrate and heavy metals in groundwater resources of Abarkooh plain, central Iran. Eur Water. 58:143–150.
  • Mimi ZA, Mahmoud N, Madi MA. 2012. Modified DRASTIC assessment for intrinsic vulnerability mapping of karst aquifers: a case study. Environ Earth Sci. 66(2):447–456.
  • Ministry of Energy of Iran. 2005. Iranian watersheds and study areas coding and classifications document .
  • Moghaddam HK, Banihabib ME, Javadi S, Randhir TO. 2021. A framework for the assessment of qualitative and quantitative sustainable development of groundwater system. Sustain Dev. 29(6):1096–1110.
  • Mueller D. K. 1995. Nutrients in ground water and surface water of the United States: an analysis of data through 1992. Vol. 95, No. 4031. Reston, VA: U. S. Geological Survey.
  • Napolitano P, Fabbri AG. 1996. Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, 235(235):559–566.
  • Nasri G, Hajji S, Aydi W, Boughariou E, Allouche N, Bouri S. 2021. Water vulnerability of coastal aquifers using AHP and parametric models: methodological overview and a case study assessment. Arab J Geosci. 14(1):1–19.
  • Ncibi K, Chaar H, Hadji R, Baccari N, Sebei A, Khelifi F, Abbes M, Hamed Y. 2020. A GIS-based statistical model for assessing groundwater susceptibility index in shallow aquifer in Central Tunisia (Sidi Bouzid basin). Arab J Geosci. 13(2):1–21.
  • Neshat A, Pradhan B, Pirasteh S, Shafri HZM. 2014. Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environ Earth Sci. 71(7):3119–3131.
  • Novinpour EA, Moghimi H, Kaki M. 2022. Aquifer vulnerability based on classical methods and GIS-based fuzzy optimization method (case study: chahardoli plain in Kurdistan province, Iran). Arab J Geosci. 15(4):1–15.
  • Persaud E, Levison J. 2021. Impacts of changing watershed conditions in the assessment of future groundwater contamination risk. J Hydrol. 603:127142.
  • Ravbar N, Goldscheider N. 2007. Proposed methodology of vulnerability and contamination risk mapping for the protection of karst aquifers in Slovenia. AC. 36(3):461–475.
  • Roozitalab, M. H., Siadat, H., & Farshad, A., editors. 2018. The soils of Iran. Switzerland: Springer; p. 255.
  • Sadat-Noori M, Ebrahimi K. 2016. Groundwater vulnerability assessment in agricultural areas using a modified DRASTIC model. Environ Monit Assess. 188(1):19.
  • Saha D, Alam F. 2014. Groundwater vulnerability assessment using DRASTIC and Pesticide DRASTIC models in intense agriculture area of the Gangetic plains, India. Environ Monit Assess. 186(12):8741–8763.
  • Sener E, Davraz A. 2013. Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: the case of Egirdir Lake basin (Isparta, Turkey). Hydrogeol J. 21(3):701–714.
  • Singh A, Srivastav SK, Kumar S, Chakrapani GJ. 2015. A modified-DRASTIC model (DRASTICA) for assessment of groundwater vulnerability to pollution in an urbanized environment in Lucknow, India. Environ Earth Sci. 74(7):5475–5490.
  • Singha SS, Pasupuleti S, Singha S, Singh R, Venkatesh AS. 2019. A GIS-based modified DRASTIC approach for geospatial modeling of groundwater vulnerability and pollution risk mapping in Korba district, Central India. Environ Earth Sci. 78(21):1–19.
  • Soldo B, Mahmoudi Sivand S, Afrasiabian A, Đurin B. 2020. Effect of sinkholes on groundwater resources in arid and semi-arid karst Area in Abarkooh, Iran. Environments. 7(4):26.
  • Stempvoort DV, Ewert L, Wassenaar L. 1993. Aquifer vulnerability index: a GIS-compatible method for groundwater vulnerability mapping. Can Water Resour J. 18(1):25–37.
  • Tabatabai H. 1994. Gravity and magnetic surveying of central 1\part of Abarkoh Basin. National Iranian Oil Company, internal report
  • Taheri K, Gutiérrez F, Mohseni H, Raeisi E, Taheri M. 2015b. Sinkhole susceptibility mapping using the analytical hierarchy process (AHP) and magnitude–frequency relationships: a case study in Hamadan province, Iran. Geomorphology. 234:64–79.
  • Taheri K, Missimer TM, Mohseni H, Fidelibus MD, Fathollahy M, Taheri M. 2021. Enhancing spatial prediction of sinkhole susceptibility by mixed waters geochemistry evaluation: application of ROC and GIS. Environ Earth Sci. 80(14):1–28.
  • Taheri K, Missimer TM, Taheri M, Moayedi H, Mohseni Pour F. 2020. Critical zone assessments of an alluvial aquifer system using the multi-influencing factor (MIF) and analytical hierarchy process (AHP) models in Western Iran. Nat Resour Res. 29(2):1163–1191.
  • Taheri K, Shahabi H, Chapi K, Shirzadi A, Gutiérrez F, Khosravi K. 2019. Sinkhole susceptibility mapping: a comparison between Bayes‐based machine learning algorithms. Land Degrad Dev. 30(7):730–745.
  • Taheri K, Taheri M, Komail MS. 2017. Sin-DRASTIC: a modified vulnerability mapping method for alluvial aquifer hosted by karst in the north of Hamadan province, west of Iran. In: EuroKarst 2016, Neuchâtel. Cham: Springer; p. 255–271.
  • Taheri K, Taheri M, Mohsenipour F. 2015a. LEPT, a simplified approach for assessing karst vulnerability in regions by sparse data: a case in Kermanshah province, Iran. In Proceedings of 14th Sinkhole Conference, NCKRI Symposium. Vol. 5; p. 483–492.
  • Warren RHP. 2019. Modifying Ohio’s DRASTIC ground water potential pollution model to account for karst limestone voids and sinkholes [doctoral dissertation]. The Ohio State University.
  • WHO. 2011. Guidelines for drinking-water quality. WHO Chronicle. 38(4):104–108.
  • YRWA. 2018.
  • Zafane D, Gharbi B, Douaoui A. 2017, November. A new model (DRASTIC-LU) for evaluating groundwater vulnerability in alluvial aquifer of upper cheliff (Algeria). In Euro-Mediterranean Conference for Environmental Integration. Cham: Springer. p. 615–617.
  • Zwahlen F, editor. 2004. Vulnerability and risk mapping for the protection of carbonate (karst) aquifers, EUR 20912. Brussels7 European Commission, Directorate-General XII Science, Research and Development; p. 297.