2,279
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Deep learning to assess the effects of land use/land cover and climate change on landslide susceptibility in the Tra Khuc river basin of Vietnam

, , , , , , , & ORCID Icon show all
Article: 2172218 | Received 05 Sep 2022, Accepted 18 Jan 2023, Published online: 31 Jan 2023

References

  • Abdı A, Bouamrane A, Karech T, Dahri N, Kaouachi A. 2021. Landslide susceptibility mapping using GIS-based fuzzy logic and the analytical hierarchical processes approach: a case study in Constantine (North-East Algeria). Geotech Geol Eng. 39(8):5675–5691.
  • Achour Y, Boumezbeur A, Hadji R, Chouabbi A, Cavaleiro V, Bendaoud EA. 2017. Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arabian J Geosci. 10(8):1–16.
  • Aghelpour P, Mohammadi B, Mehdizadeh S, Bahrami-Pichaghchi H, Duan Z. 2021. A novel hybrid dragonfly optimization algorithm for agricultural drought prediction. Stoch Environ Res Risk Assess. 35(12):2459–2477.
  • Al-Najjar HA, Pradhan B. 2021. Spatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networks. Geosci Front. 12(2):625–637.
  • Ali SA, Parvin F, Vojteková J, Costache R, Linh NTT, Pham QB, Vojtek M, Gigović L, Ahmad A, Ghorbani MA. 2021. GIS-based landslide susceptibility modeling: a comparison between fuzzy multi-criteria and machine learning algorithms. Geosci Front. 12(2):857–876.
  • Aouissi HA, Petrişor A-I, Ababsa M, Boştenaru-Dan M, Tourki M, Bouslama Z. 2021. Influence of land use on avian diversity in North African urban environments. Land. 10(4):434.
  • Arabameri A, Chandra Pal S, Rezaie F, Chakrabortty R, Saha A, Blaschke T, Di Napoli M, Ghorbanzadeh O, Thi P, Ngo T. 2021. Decision tree based ensemble machine learning approaches for landslide susceptibility mapping. Geocarto Int. 37(16):1–35.
  • Avtar R, Singh C, Singh G, Verma R, Mukherjee S, Sawada H. 2011. Landslide susceptibility zonation study using remote sensing and GIS technology in the Ken-Betwa River Link area, India. Bull Eng Geol Environ. 70(4):595–606.
  • Bourenane H, Bouhadad Y. 2021. Impact of land use changes on landslides occurrence in urban area: the case of the Constantine city (Ne Algeria). Geotech Geol Eng. 39(6):1–21.
  • Braimoh A, Vlek P. 2004. The impact of land‐cover change on soil properties in northern Ghana. Land Degrad Dev. 15(1):65–74.
  • Bui Q-T. 2019. Metaheuristic algorithms in optimizing neural network: a comparative study for forest fire susceptibility mapping in Dak Nong, Vietnam. Geomat Nat Hazards Risk. 10(1):136–150.
  • Chang F-J, Chen Y-C. 2003. Estuary water-stage forecasting by using radial basis function neural network. J Hydrol. 270(1–2):158–166.
  • Chang X, Zhang F, Cong K, Liu X. 2021. Scenario simulation of land use and land cover change in mining area. Sci Rep. 11(1):1–12.
  • Chang Z, Du Z, Zhang F, Huang F, Chen J, Li W, Guo Z. 2020. Landslide susceptibility prediction based on remote sensing images and GIS: comparisons of supervised and unsupervised machine learning models. Remote Sens. 12(3):502.
  • Chauhan S, Sharma M, Arora MK. 2010. Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model. Landslides. 7(4):411–423.
  • Chen L, Guo Z, Yin K, Shrestha DP, Jin S. 2019. The influence of land use and land cover change on landslide susceptibility: a case study in Zhushan Town, Xuan’en County (Hubei, China). Nat Hazards Earth Syst Sci. 19(10):2207–2228.
  • Chen W, Chai H, Zhao Z, Wang Q, Hong H. 2016. Landslide susceptibility mapping based on GIS and support vector machine models for the Qianyang County, China. Environ Earth Sci. 75(6):1–13.
  • Chen W, Peng J, Hong H, Shahabi H, Pradhan B, Liu J, Zhu A-X, Pei X, Duan Z. 2018a. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Sci Total Environ. 626:1121–1135.
  • Chen W, Pourghasemi HR, Panahi M, Kornejady A, Wang J, Xie X, Cao S. 2017. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques. Geomorphology. 297:69–85.
  • Chen W, Shahabi H, Shirzadi A, Hong H, Akgun A, Tian Y, Liu J, Zhu A, Li S. 2019. Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling. Bull Eng Geol Environ. 78(6):4397–4419.
  • Chen W, Shahabi H, Zhang S, Khosravi K, Shirzadi A, Chapi K, Pham BT, Zhang T, Zhang L, Chai H. 2018b. Landslide susceptibility modeling based on GIS and novel bagging-based kernel logistic regression. Appl Sci. 8(12):2540.
  • Chen W, Zhang S. 2021. GIS-based comparative study of Bayes network, Hoeffding tree and logistic model tree for landslide susceptibility modeling. Catena. 203:105344.
  • Chen X, Chen W. 2021. Gis-based landslide susceptibility assessment using optimized hybrid machine learning methods. Catena. 196:104833.
  • Chowdhuri I, Pal SC, Chakrabortty R, Malik S, Das B, Roy P, Sen K. 2021. Spatial prediction of landslide susceptibility using projected storm rainfall and land use in Himalayan region. Bull Eng Geol Environ. 80(7):5237–5258.
  • Clerici A, Perego S, Tellini C, Vescovi P. 2002. A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology. 48(4):349–364.
  • Crozier MJ. 2010. Deciphering the effect of climate change on landslide activity: a review. Geomorphology. 124(3–4):260–267.
  • Devara M, Tiwari A, Dwivedi R. 2021. Landslide susceptibility mapping using MT-INSAR and Ahp enabled GIS-based multi-criteria decision analysis. Geomat Nat Hazards Risk. 12(1):675–693.
  • Dias HC, Gramani MF, Grohmann CH, Bateira C, Vieira BC. 2021. Statistical-based shallow landslide susceptibility assessment for a tropical environment: a case study in the southeastern Brazilian coast. Nat Hazards. 108(1):205–223.
  • Dymond JR, Ausseil A-G, Shepherd JD, Buettner L. 2006. Validation of a region-wide model of landslide susceptibility in the Manawatu–Wanganui region of New Zealand. Geomorphology. 74(1):70–79. https://www.sciencedirect.com/science/article/pii/S0169555X05002229.
  • Ermini L, Catani F, Casagli N. 2005. Artificial neural networks applied to landslide susceptibility assessment. Geomorphology. 66(1–4):327–343.
  • Fang Z, Wang Y, Peng L, Hong H. 2020. Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Comput Geosci. 139:104470.
  • Gallart F, Llorens P. 2003. Catchment management under environmental change: impact of land cover change on water resources. Water Int. 28(3):334–340.
  • Gameiro S, Riffel ES, De Oliveira GG, Guasselli LA. 2021. Artificial neural networks applied to landslide susceptibility: the effect of sampling areas on model capacity for generalization and extrapolation. Appl Geogr. 137:102598.
  • Garcia-Alvarez D, Olmedo MTC, Paegelow M. 2019. Sensitivity of a common land use cover change (LUCC) model to the minimum mapping unit (MMU) and minimum mapping width (MMW) of input maps. Comput Environ Urban Syst. 78:101389.
  • Guo C, Montgomery DR, Zhang Y, Wang K, Yang Z. 2015. Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan Plateau, China. Geomorphology. 248:93–110.
  • Gupta S, Thakur S, Gupta A. 2022. Optimized feature selection approach for smartphone based diabetic retinopathy detection. 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM). IEEE. p. 350–355.
  • He S, Pan P, Dai L, Wang H, Liu J. 2012. Application of kernel-based fisher discriminant analysis to map landslide susceptibility in the Qinggan River delta, Three Gorges, China. Geomorphology. 171:30–41.
  • Henriques C, Zêzere JL, Marques F. 2015. The role of the lithological setting on the landslide pattern and distribution. Eng Geol. 189:17–31.
  • Hong H, Pradhan B, Jebur MN, Bui DT, Xu C, Akgun A. 2016. Spatial prediction of landslide hazard at the Luxi area (China) using support vector machines. Environ Earth Sci. 75(1):1–14.
  • Hong H, Chen W, Xu C, Youssef AM, Pradhan B, Tien Bui D. 2017. Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio, certainty factor, and index of entropy. Geocarto Int. 32(2):139–154.
  • Huang F, Chen J, Du Z, Yao C, Huang J, Jiang Q, Chang Z, Li S. 2020. Landslide susceptibility prediction considering regional soil erosion based on machine-learning models. ISPRS Int J Geo-Inf. 9(6):377.
  • Huang J, Ling S, Wu X, Deng R. 2022. GIS-based comparative study of the Bayesian network, decision table, radial basis function network and stochastic gradient descent for the spatial prediction of landslide susceptibility. Land. 11(3):436.
  • Hürlimann M, Guo Z, Puig-Polo C, Medina V. 2022. Impacts of future climate and land cover changes on landslide susceptibility: regional scale modelling in the Val d’Aran region (Pyrenees, Spain). Landslides. 19(1):99–118.
  • Jakob M, Lambert S. 2009. Climate change effects on landslides along the southwest coast of British Columbia. Geomorphology. 107(3–4):275–284.
  • Jakob M, Hungr O, Jakob DM. 2005. Debris-flow hazards and related phenomena. Berlin, Heidelberg: Springer.
  • Karsli F, Atasoy M, Yalcin A, Reis S, Demir O, Gokceoglu C. 2009. Effects of land-use changes on landslides in a landslide-prone area (Ardesen, Rize, Ne Turkey). Environ Monit Assess. 156(1):241–255.
  • Khatri A, Gaba A, Rana K, Kumar V. 2020. A novel life choice-based optimizer. Soft Comput. 24(12):9121–9141.
  • Khoshnood Motlagh S, Sadoddin A, Haghnegahdar A, Razavi S, Salmanmahiny A, Ghorbani K. 2021. Analysis and prediction of land cover changes using the land change modeler (LCM) in a semiarid river basin, Iran. Land Degrad Dev. 32(10):3092–3105.
  • Kumari S, Chauhan A, Shankar V. 2021. Assessment of climate change implications on landslides in mid and high hills of Himachal Pradesh, India. Arabian J Geosci. 14(14):1–15.
  • Lee S, Pradhan B. 2007. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides. 4(1):33–41.
  • Lee S, Ryu JH, Min K, Won JS. 2003. Landslide susceptibility analysis using GIS and artificial neural network. Earth Surf Process Landf. 28(12):1361–1376.
  • Lehmann P, Von Ruette J, Or D. 2019. Deforestation effects on rainfall‐induced shallow landslides: remote sensing and physically‐based modelling. Water Resour Res. 55(11):9962–9976.
  • Leta MK, Demissie TA, Tränckner J. 2021. Modeling and prediction of land use land cover change dynamics based on land change modeler (LCM) in Nashe watershed, upper Blue Nile Basin, Ethiopia. Sustainability. 13(7):3740.
  • Li D, Huang F, Yan L, Cao Z, Chen J, Ye Z. 2019. Landslide susceptibility prediction using particle-swarm-optimized multilayer perceptron: comparisons with multilayer-perceptron-only, BP neural network, and information value models. Appl Sci. 9(18):3664.
  • Li Y, Lin F, Lou L, Li J, Xu Z, Zhu S, Luo X, Huo G, Zhao Q. 2021. Performance analysis of landslide susceptibility assessment under different factor-filtering models. Arabian J Geosci. 14(12):1–14.
  • Liu J, Wu Z, Zhang H. 2021. Analysis of changes in landslide susceptibility according to land use over 38 years in Lixian County, China. Sustainability. 13(19):10858.
  • Malek Ž, Boerboom L, Glade T. 2015. Future forest cover change scenarios with implications for landslide risk: an example from Buzau Subcarpathians, Romania. Environ Manage. 56(5):1228–1243.
  • Mandal K, Saha S, Mandal S. 2021. Applying deep learning and benchmark machine learning algorithms for landslide susceptibility modelling in Rorachu river basin of Sikkim Himalaya, India. Geosci Front. 12(5):101203.
  • Marimuthu R, Thomas BA, Dcruz N, Hayar A. 2022. Choice-based recreation facility for smart cities. In: Rani, S., Sai, V., Maheswar, R. (eds) IOT and WSN based smart cities: a machine learning perspective. Switzerland: Springer. p. 257–273.
  • Mehrabi M. 2022. Landslide susceptibility zonation using statistical and machine learning approaches in northern Lecco, Italy. Nat Hazards. 111(1):901–937.
  • Mehrabi M, Moayedi H. 2021. Landslide susceptibility mapping using artificial neural network tuned by metaheuristic algorithms. Environ Earth Sci. 80(24):1–20.
  • Mehrabi M, Pradhan B, Moayedi H, Alamri A. 2020. Optimizing an adaptive neuro-fuzzy inference system for spatial prediction of landslide susceptibility using four state-of-the-art metaheuristic techniques. Sensors. 20(6):1723.
  • Mirjalili S. 2016. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl. 27(4):1053–1073.
  • Moayedi H, Mehrabi M, Bui DT, Pradhan B, Foong LK. 2020. Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility. J Environ Manage. 260:109867.
  • Moayedi H, Osouli A, Nguyen H, Rashid ASA. 2021. A novel Harris hawks’ optimization and k-fold cross-validation predicting slope stability. Engineering with Computers. 37(1):369–379.
  • Moharrami M, Naboureh A, Gudiyangada Nachappa T, Ghorbanzadeh O, Guan X, Blaschke T. 2020. National-scale landslide susceptibility mapping in Austria using fuzzy best-worst multi-criteria decision-making. ISPRS Int J Geo-Inf. 9(6):393.
  • Mottet É, Roche Y. 2009. L’urbanisation de la ville de ninh binh dans le delta du fleuve rouge (Vietnam): mise en perspective des forces et faiblesses de la gestion du risque d’inondation. VertigO-la Revue Électronique en Sciences de L'environnement. 8(3). https://doi.org/10.4000/vertigo.7782
  • Nagendra H, Reyers B, Lavorel S. 2013. Impacts of land change on biodiversity: making the link to ecosystem services. Curr Opin Environ Sustain. 5(5):503–508.
  • Näschen K, Diekkrüger B, Evers M, Höllermann B, Steinbach S, Thonfeld F. 2019. The impact of land use/land cover change (LULCC) on water resources in a tropical catchment in Tanzania under different climate change scenarios. Sustainability. 11(24):7083.
  • Ngo PTT, Panahi M, Khosravi K, Ghorbanzadeh O, Kariminejad N, Cerda A, Lee S. 2021. Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran. Geosci Front. 12(2):505–519.
  • Nguyen H-D, Pham V-D, Nguyen Q-H, Pham V-M, Pham MH, Vu VM, Bui Q-T. 2020. An optimal search for neural network parameters using the Salp swarm optimization algorithm: a landslide application. Remote Sens Lett. 11(4):353–362.
  • Nguyen HD, Ardillier-Carras F, Touchart L. 2018. Les paysages de rizières et leur évolution récente dans le delta du fleuve gianh. Cybergeo: Eur J Geogr. 876. https://doi.org/10.4000/cybergeo.29826
  • Nguyen HD, Dang DK, Nguyen Q-H, Bui Q-T, Petrisor A-I. 2022a. Evaluating the effects of climate and land use change on the future flood susceptibility in the central region of Vietnam by integrating land change modeler, machine learning methods. Geocarto Int. 1–36. https://doi.org/10.1080/10106049.2022.2071477
  • Nguyen HD, Fox D, Dang DK, Pham LT, Viet Du QV, Nguyen THT, Dang TN, Tran VT, Vu PL, Nguyen Q-H. 2021. Predicting future urban flood risk using land change and hydraulic modeling in a river watershed in the central province of Vietnam. Remote Sens. 13(2):262.
  • Nguyen HD, Quang-Thanh B, Nguyen Q-H, Nguyen TG, Pham LT, Nguyen XL, Vu PL, Thanh Nguyen TH, Nguyen AT, Petrisor A-I. 2022b. A novel hybrid approach to flood susceptibility assessment based on machine learning and land use change. Case study: a river watershed in Vietnam. Hydrol Sci J. 67(7): 1–19.
  • Nguyen Q-H, Chou T-Y, Yeh M-L, Hoang T-V, Nguyen H-D, Bui Q-T. 2021. Henry’s gas solubility optimization algorithm in formulating deep neural network for landslide susceptibility assessment in mountainous areas. Environ Earth Sci. 80(11):1–10.
  • Nguyen V-T, Tran TH, Ha NA, Ngo VL, Nadhir A-A, Tran VP, Duy Nguyen H, Ma M, Amini A, Prakash I. 2019. GIS based novel hybrid computational intelligence models for mapping landslide susceptibility: a case study at Da Lat City, Vietnam. Sustainability. 11(24):7118.
  • Ojima D, Galvin K, Turner B. 1994. The global impact of land-use change. BioScience. 44(5):300–304.
  • Orr MJ. 1996. Introduction to radial basis function networks. Technical Report, center for cognitive science, University of Edinburgh.
  • Oyelade ON, Ezugwu AE. 2022. Characterization of abnormalities in breast cancer images using nature‐inspired metaheuristic optimized convolutional neural networks model. Concurr Comput: Pract Exp. 34(4):e6629.
  • Persichillo MG, Bordoni M, Meisina C. 2017. The role of land use changes in the distribution of shallow landslides. Sci Total Environ. 574:924–937.
  • Petrişor A-I, Sirodoev I, Ianoş I. 2020. Trends in the national and regional transitional dynamics of land cover and use changes in Romania. Remote Sens. 12(2):230.
  • Pham BT, Jaafari A, Prakash I, Bui DT. 2019a. A novel hybrid intelligent model of support vector machines and the multiboost ensemble for landslide susceptibility modeling. Bull Eng Geol Environ. 78(4):2865–2886.
  • Pham BT, Nguyen MD, Nguyen-Thoi T, Ho LS, Koopialipoor M, Quoc NK, Armaghani DJ, Van Le H. 2021. A novel approach for classification of soils based on laboratory tests using Adaboost, Tree and ANN modeling. Transp Geotech. 27:100508.
  • Pham BT, Prakash I, Singh SK, Shirzadi A, Shahabi H, Bui DT. 2019b. Landslide susceptibility modeling using reduced error pruning trees and different ensemble techniques: hybrid machine learning approaches. Catena. 175:203–218.
  • Pham BT, Shirzadi A, Bui DT, Prakash I, Dholakia M. 2018. A hybrid machine learning ensemble approach based on a radial basis function neural network and rotation forest for landslide susceptibility modeling: a case study in the Himalayan area, India. Int J Sediment Res. 33(2):157–170.
  • Pham QB, Achour Y, Ali SA, Parvin F, Vojtek M, Vojteková J, Al-Ansari N, Achu A, Costache R, Khedher KM. 2021a. A comparison among fuzzy multi-criteria decision making, bivariate, multivariate and machine learning models in landslide susceptibility mapping. Geomat Nat Hazards Risk. 12(1):1741–1777.
  • Pham QB, Chandra Pal S, Chakrabortty R, Saha A, Janizadeh S, Ahmadi K, Khedher KM, Anh DT, Tiefenbacher JP, Bannari A. 2021b. Predicting landslide susceptibility based on decision tree machine learning models under climate and land use changes. Geocarto Int.: 1–27.
  • Pham VD, Nguyen Q-H, Nguyen H-D, Pham V-M, Bui Q-T. 2020. Convolutional neural network—optimized moth flame algorithm for shallow landslide susceptible analysis. IEEE Access. 8:32727–32736.
  • Pourghasemi HR, Pradhan B, Gokceoglu C. 2012. Application of fuzzy logic and analytical hierarchy process (Ahp) to landslide susceptibility mapping at Haraz Watershed, Iran. Nat Hazards. 63(2):965–996.
  • Pourghasemi HR, Jirandeh AG, Pradhan B, Xu C, Gokceoglu C. 2013. Landslide susceptibility mapping using support vector machine and GIS at the Golestan province, Iran. J Earth Syst Sci. 122(2):349–369.
  • Pourghasemi HR, Sadhasivam N, Amiri M, Eskandari S, Santosh M. 2021. Landslide susceptibility assessment and mapping using state-of-the art machine learning techniques. Nat Hazards. 108(1):1291–1316.
  • Pradhan B. 2013. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci. 51:350–365. https://www.sciencedirect.com/science/article/pii/S0098300412003093.
  • Pradhan B, Sezer EA, Gokceoglu C, Buchroithner MF. 2010. Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia). IEEE Trans Geosci Remote Sens. 48(12):4164–4177.
  • Rabby YW, Li Y, Abedin J, Sabrina S. 2022. Impact of land use/land cover change on landslide susceptibility in Rangamati municipality of Rangamati district, Bangladesh. ISPRS Int J Geo-Inf. 11(2):89.
  • Rahman CM, Rashid TA. 2019. Dragonfly algorithm and its applications in applied science survey. Comput Intell Neurosci. 2019:1–21.
  • Rahman CM, Rashid TA, Alsadoon A, Bacanin N, Fattah P, Mirjalili S. 2021. A survey on dragonfly algorithm and its applications in engineering. Evol Intell. 2021:1–21.
  • Reichenbach P, Busca C, Mondini AC, Rossi M., 2014. The influence of land use change on landslide susceptibility zonation: the Briga catchment test site (Messina, Italy). Environ Manage. 54(6):1372–1384.
  • Rianna G, Zollo A, Tommasi P, Paciucci M, Comegna L, Mercogliano P. 2014. Evaluation of the effects of climate changes on landslide activity of orvieto clayey slope. Procedia Earth Planet Sci. 9:54–63.
  • Roccati A, Paliaga G, Luino F, Faccini F, Turconi L. 2021. GIS-based landslide susceptibility mapping for land use planning and risk assessment. Land. 10(2):162.
  • Roose A, Kull A, Gauk M, Tali T. 2013. Land use policy shocks in the post-communist urban fringe: a case study of Estonia. Land Use Policy. 30(1):76–83.
  • Saha S, Roy J, Pradhan B, Hembram TK. 2021. Hybrid ensemble machine learning approaches for landslide susceptibility mapping using different sampling ratios at east Sikkim Himalayan, India. Adv Space Res. 68(7):2819–2840.
  • Said M, Houssein EH, Deb S, Ghoniem RM, Elsayed AG. 2022. Economic load dispatch problem based on search and rescue optimization algorithm. IEEE Access. 10:47109–47123.
  • Seki HA, Shirima DD, Courtney Mustaphi CJ, Marchant R, Munishi PK. 2018. The impact of land use and land cover change on biodiversity within and adjacent to Kibasira Swamp in Kilombero Valley, Tanzania. Afr J Ecol. 56(3):518–527.
  • Shabani A, Asgarian B, Gharebaghi SA, Salido MA, Giret A. 2019. A new optimization algorithm based on search and rescue operations. Math Probl Eng. 2019:2482543. https://doi.org/10.1155/2019/2482543
  • Shahzad N, Ding X, Abbas S. 2022. A comparative assessment of machine learning models for landslide susceptibility mapping in the rugged terrain of northern Pakistan. Appl Sci. 12(5):2280.
  • Shu H, Guo Z, Qi S, Song D, Pourghasemi HR, Ma J. 2021. Integrating landslide typology with weighted frequency ratio model for landslide susceptibility mapping: a case study from Lanzhou city of northwestern China. Remote Sens. 13(18):3623.
  • Shu H, Hürlimann M, Molowny-Horas R, González M, Pinyol J, Abancó C, Ma J. 2019. Relation between land cover and landslide susceptibility in Val d‘Aran, Pyrenees (Spain): historical aspects, present situation and forward prediction. Sci Total Environ. 693:133557. https://www.sciencedirect.com/science/article/pii/S0048969719334771.
  • Steger S, Mair V, Kofler C, Pittore M, Zebisch M, Schneiderbauer S. 2021. Correlation does not imply geomorphic causation in data-driven landslide susceptibility modelling–benefits of exploring landslide data collection effects. Sci Total Environ. 776:145935.
  • Sun D, Xu J, Wen H, Wang D. 2021. Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: a comparison between logistic regression and random forest. Eng Geol. 281:105972.
  • Tyagi A, Tiwari RK, James N. 2022. Mapping the landslide susceptibility considering future land-use land-cover scenario. Landslides. 20:65–76.
  • Vapnik V, Guyon I, Hastie T. 1995. Support vector machines. Mach Learn. 20(3):273–297.
  • Vojteková J, Vojtek M. 2020. Assessment of landslide susceptibility at a local spatial scale applying the multi-criteria analysis and GIS: a case study from Slovakia. Geomat Nat Hazards Risk. 11(1):131–148.
  • Wu Y, Li W, Liu P, Bai H, Wang Q, He J, Liu Y, Sun S. 2016. Application of analytic hierarchy process model for landslide susceptibility mapping in the Gangu County, Gansu Province, China. Environ Earth Sci. 75(5):1–11.
  • Xiao T, Yin K, Yao T, Liu S. 2019. Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning models in Wanzhou County, Three Gorges Reservoir, China. Acta Geochim. 38(5):654–669.
  • Xu K, Guo Q, Li Z, Xiao J, Qin Y, Chen D, Kong C. 2015. Landslide susceptibility evaluation based on BPNN and GIS: a case of Guojiaba in the Three Gorges Reservoir Area. Int J Geogr Inf Sci. 29(7):1111–1124.
  • Yalcin A, Reis S, Aydinoglu A, Yomralioglu T. 2011. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, Ne Turkey. Catena. 85(3):274–287.
  • Yao X, Tham L, Dai F. 2008. Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China. Geomorphology. 101(4):572–582.
  • Youssef AM, Pourghasemi HR. 2021. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geosci Front. 12(2):639–655.
  • Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM. 2016. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides. 13(5):839–856.
  • Zhang J, Xiao M, Gao L, Pan Q. 2018. Queuing search algorithm: a novel metaheuristic algorithm for solving engineering optimization problems. Appl Math Modell. 63:464–490.
  • Zhang T, Fu Q, Wang H, Liu F, Wang H, Han L. 2021. Bagging-based machine learning algorithms for landslide susceptibility modeling. Nat Hazards. 110:823–846.
  • Zhou S, Zhang Y, Tan X, Abbas SM. 2021. A comparative study of the bivariate, multivariate and machine-learning-based statistical models for landslide susceptibility mapping in a seismic-prone region in China. Arabian J Geosci. 14(6):1–19.
  • Zhou X, Wen H, Zhang Y, Xu J, Zhang W. 2021. Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization. Geosci Front. 12(5):101211.
  • Zhu D, Song K, Mu J, Huang H, Du H, Xiazhuang F, Sun C. 2021. Effect of climate change induced extreme precipitation on landslide activity in the Three Gorges Reservoir, China. Bull Eng Geol Environ. 80(2):781–794.