856
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Accurate deformation analysis based on point position uncertainty estimation and adaptive projection point cloud comparison

, , , &
Article: 2175916 | Received 24 Aug 2022, Accepted 28 Jan 2023, Published online: 12 Feb 2023

References

  • Abellán A, Calvet J, Vilaplana JM, Blanchard J. 2010. Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring. Geomorphology. 119(3–4):162–171.
  • Abellán A, Jaboyedoff M, Oppikofer T, Oppikofer T, Vilaplana JM. 2009. Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event. Nat Hazards Earth Syst Sci. 9(2):365–372.
  • Alam MS, Kumar D, Chatterjee RS. 2022. Improving the capability of integrated DInSAR and PSI approach for better detection, monitoring, and analysis of land surface deformation in underground mining environment. Geocarto Int. 37(12):3607–3641.
  • Anders K, Marx S, Boike J, Herfort B, Wilcox EJ, Langer M, Marsh P, Höfle B. 2020. Multitemporal terrestrial laser scanning point clouds for thaw subsidence observation at Arctic permafrost monitoring sites. Earth Surf Process Landforms. 45(7):1589–1600.
  • Chen X, Yu K, Wu H. 2018. Determination of minimum detectable deformation of terrestrial laser scanning based on error entropy model. IEEE Trans Geosci Remote Sensing. 56(1):105–116.
  • Dimitri L, Nicolas B, Jerome L. 2013. Accurate 3D comparison of complex topography with terrestrial laser scanner: application to the Rangitikei Canyon (N-Z). ISPRS J Photogramm Remote Sens. 82:10–26.
  • Fey C, Wichmann V. 2017. Long-range terrestrial laser scanning for geomorphological change detection in alpine terrain – handling uncertainties. Earth Surf Process Landforms. 42(5):789–802.
  • Girardeau-Montaut D, Roux M, Marc R, Thibault G. 2005. Change detection on points cloud data acquired with a ground laser scanner, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. 36.
  • Kasperski J, Delacourt C, Allemand P, Potherat P, Jaud M, Varrel E. 2010. Application of a terrestrial laser scanner (TLS) to the study of the Séchilienne landslide (Isère, France). Remote Sens. 2(12):2785–2802.
  • Huang D, Gu DM, Song YX, Cen DF, Zeng B. 2018. Towards a complete understanding of the triggering mechanism of a large reactivated landslide in the Three Gorges Reservoir. Eng Geol. 238:36–51.
  • Huang R, Jiang L, Shen X, Dong Z, Zhou Q, Yang B, Wang H. 2019. An efficient method of monitoring slow-moving landslides with long-range terrestrial laser scanning: a case study of the Dashu landslide in the Three Gorges Reservoir Region, China. Landslides. 16(4):839–855.
  • Hayakawa YS, Kusumoto S, Matta N. 2016. Application of terrestrial laser scanning for detection of ground surface deformation in small mud volcano (Murono, Japan). Earth Planets Space. 68:1–10.
  • Jafari B, Khaloo A, Lattanzi D. 2017. Deformation tracking in 3D point clouds via statistical sampling of direct cloud-to-cloud distances. J Nondestr Eval. 36:65.
  • Jack G, Williams KA, Lukas W, Vivien Z, Bernhard H. 2021. Multi-directional change detection between point clouds, ISPRS J Photogramm Remote Sens. 172:95–113.
  • Kromer RA, Abellán A, Hutchinson DJ, Lato M, Chanut M-A, Dubois L, Jaboyedoff M. 2017. Automated terrestrial laser scanning with near-real-time change detection – monitoring of the Sechilienne landslide. Earth Surf Dyn. 5(2):293–310.
  • Lichti D. 2007. Error modelling, calibration and analysis of an AM–CW terrestrial laser scanner system. ISPRS J Photogramm Remote Sen. 61(5):307–324.
  • Lichti D, Gordon S. 2004. Error propagation in directly georeferenced terrestrial laser scanner point clouds for cultural heritage recording. Proceedings of FIG Working Week; Athens, Greece.
  • Monserrat O, Crosetto M. 2008. Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching. ISPRS J Photogramm Remote Sens. 63(1):142–154.
  • Mukupa W, Roberts GW, Hancock CM, Al-Manasir K. 2017. A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures. Surv Rev. 49(353):99–116.
  • Riquelme AJ, Abellán A, Tomás R, Jaboyedoff M. 2014. A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Comput Geosci. 68:38–52.
  • Schürch P, Densmore A, Rosser N, Lim M, McArdell B. 2011. Detection of surface change in complex topography using terrestrial laser scanning: application to the Illgraben debris-flow channel. Earth Surf Process Landforms. 36(14):1847–1859.
  • Soudarissanane S, Lindenbergh R, Menenti M, Teunissen P. 2011. Scanning geometry: influencing factor on the quality of terrestrial laser scanning points. ISPRS J Photogramm. Remote Sens. 66(4):389–399.
  • Schaer P, Skaloud J, Landtwing S, Legat K. 2007. Accuracy estimation for laser point cloud including scanning geometry. The 5th International Symposium on Mobile Mapping Technology: Padua, Italy.
  • Streletskiy DA, Shiklomanov NI, Little JD, Nelson FE, Brown J, Nyland KE, Klene AE. 2017. Thaw subsidence in undisturbed tundra landscapes, Barrow, Alaska, 1962–2015. Permafrost Periglac Process. 28(3):566–572.
  • Sun W, Wang J, Jin F. 2020. An automatic coordinate unification method of multitemporal point clouds based on virtual reference datum detection. IEEE J Sel Top Appl Earth Observations Remote Sens. 13:3942–3950.
  • Teza G, Galgaro A, Zaltron N, Genevois R. 2007. Terrestrial laser scanner to detect landslide displacement fields: a new approach. Int J Remote Sens. 28(16):3425–3446.
  • Tiwari A, Narayan AB, Dwivedi R, Dikshit O, Nagarajan B. 2020. Monitoring of landslide activity at the Sirobagarh landslide, Uttarakhand, India, using LiDAR, SAR interferometry and geodetic surveys. Geocarto Int. 35(5):535–558.
  • Williams JG, Anders K, Winiwarter L, Zahs V, Höfle B. 2021. Multi-directional change detection between point clouds. ISPRS J Photogramm Remote Sens. 172:95–113.
  • Williams JG, Rosser NJ, Hardy RJ, Brain MJ, Afana AA. 2018. Optimising 4D approaches to surface change detection: improving understanding of Rockfall magnitude-frequency. Earth Surf Dyn. 6(1):101–119.
  • Xu H, Li H, Yang X, Qi S, Zhou J. 2018. Integration of terrestrial laser scanning and NURBS modeling for the deformation monitoring of an earth-rock dam. Sensors. 19(1):22.
  • Zhao X, Kargoll B, Omidalizarandi M, Xu X, Alkhatib H. 2018. Model selection for parametric surfaces approximating 3D point clouds for deformation analysis. Remote Sens. 10(4):634.