2,599
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Estimation and mapping of pasture biomass in Mongolia using machine learning methods

, ORCID Icon, , &
Article: 2195824 | Received 05 May 2022, Accepted 22 Mar 2023, Published online: 03 Apr 2023

References

  • Adyasuren T. 1989. Remote sensing technology for evaluation of biomass in Mongolia, PhD thesis. Ulaanbaatar, Mongolia; p. 156.
  • Alexandridis T, Oikonomakis N, Gitas I, Eskridge K, Silleos N. 2014. The performance of vegetation indices for operational monitoring of CORINE vegetation types. Int J Remote Sens. 35(9):3268–3285.
  • Amarsaikhan D. 2017. Environmental studies of Mongolia using advanced spatial techniques. Proceedings of the International Conference on Natural Condition and Territorial Location Aspects, Ulaanbaatar, Mongolia; p. 280–289.
  • Amarsaikhan D. 2019. Principles of modern RS and GIS. Ulaanbaatar, Mongolia: Erdem Press of MAS; p. 263.
  • Anderson GL, Hanson JD, Haas RH. 1993. Evaluating Landsat Thematic Mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands. Remote Sens Environ. 45(2):165–175.
  • Arnon K, Yoram JK, Lorraine R, Andrew W. 2001. AFRI-aerosol free vegetation index. Remote Sens Environ. 77:10–21.
  • Baloloy AB, Blanco AC, Sta ARRC, Nadaoka K. 2020. Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. ISPRS J Photogramm Remote Sens. 166:95–117.
  • Bannari A, Asalhi H, Teillet PM. 2002. Transformed difference vegetation index (TDVI) for vegetation cover mapping. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium IGARSS '02, Toronto, Canada; p. 3053–3055.
  • Baret F, Guyot G. 1991. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens Environ. 35(2-3):161–173.
  • Bat-Oyun T, Shinoda M, Tsubo M. 2010. Estimation of pasture productivity in Mongolian grasslands: field survey and model simulation. J Agric Meteorol. 66(1):31–39.
  • Bayaraa B, Akira H, Myagmartseren P, Battsengel V, Byambasuren D, Enkhjargal N. 2021. Applicability of different vegetation indices for pasture biomass estimation in the north-central region of Mongolia. Geocarto Int. 37(25):7415-7430.
  • Bazzo COG, Kamali B, Hütt C, Bareth G, Gaiser T. 2023. A review of estimation methods for aboveground biomass in grasslands using UAV. Remote Sens. 15(3):639.
  • Benseghir L, Bachari N. 2021. Shortwave infrared vegetation index-based modelling for aboveground vegetation biomass assessment in the arid steppes of Algeria. African J Range Forage Sci. 38(4):281–290.
  • Bornuur soum. 2020., National Development Agency of Mongolia http://ldi.nda.gov.mn/?province_id=18&region_id=366.
  • Bornuur soum. 2019. Information and Research Institute of Meteorology, Hydrology and Environment. https://irimhe.namem.gov.mn/.
  • Castro P, Garbulsky M. 2018. Spectral normalized indices related with forage quality in temperate grasses: scaling up from leaves to canopies. Int J Remote Sens. 39(10):3138–3163.
  • Ceccato P, Gobron N, Flasse S, Pinty B, Tarantola S. 2002. Designing a spectral index to estimate vegetation water content from remote sensing data: part 1 Theoretical approach. Remote Sens Environ. 82(2-3):188–197.
  • Chen JM. 1996. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can J Remote Sens. 22, 3:229–242.
  • Chen L, Ren C, Zhang B, Wang Z, Xi Y. 2018. Estimation of forest above-ground biomass by geographically weighted regression and machine learning with sentinel imagery. Forests. 9(10):582–520.
  • Chen Y, Guerschman J, Shendryk Y, Henry D, Harrison MT. 2021. Estimating pasture biomass using Sentinel-2 imagery and machine learning. Remote Sens. 13(4):603.
  • Chiarito E, Cigna F, Cuozzo G, Fontanelli G, Aguilar A, Paloscia S, Rossi M, Santi E, Tapete E, Notarnicola C. 2021. Biomass retrieval based on genetic algorithm feature selection and support vector regression in Alpine grassland using ground-based hyperspectral and Sentinel-1 SAR data. Eur J Remote Sens. 54(1):209–225.
  • Clevers J, Van der Heijden G, Verzakov S, Schaepman ME. 2007. Estimating grassland biomass using SVM band shaving of hyperspectral data. Photogramm Eng Remote Sens. 73(10):1141–1148.
  • Crippen RE. 1990. Calculating the vegetation index faster. Remote Sens Environ. 34(1):71–73.
  • Cui X, Zheng G, Tian L, Yu S, Xing L, Yong L. 2012. Classification management for grassland using MODIS data: a case study in the Gannan region, China. Int J Remote Sens. 33(10):3156–3175.
  • Dorigo WA, Zurita-Milla R, Wit A, Brazile J, Singh R, Schaepman ME. 2007. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int J Appl Earth Obs Geoinf. 9(2):165–193.
  • Dusseux P, Hubert-Moy L, Corpetti T, Vertès F. 2015. Evaluation of SPOT imagery for the estimation of grassland biomass. Int J Appl Earth Obs Geoinf. 38:72–77.
  • Edirisinghe A, Hill MJ, Donald GE, Hyder M. 2011. Quantitative mapping of pasture biomass using satellite imagery. Int J Remote Sens. 32(10):2699–2724.
  • Environmental impact assessment. 2012. Oyu Tolgoi Report on Environmental impact assessment, ECO-TRADE LLC, Ulaanbaatar, Mongolia, p. 34.
  • Erdenetuya M. 2004. Pasture productivity monitoring using long term satellite and ground truth data. Proc Climate Change Arid Semi-Arid Regions Mongolia. 6(1):168–173.
  • Fang H, Liang S, Hoogenboom G. 2011. Integration of MODIS LAI and vegetation index products with the CSM-CERES-Maize model for corn yield estimation. Int J Remote Sens. 32(4):1039–1065.
  • Filho MG, Kuplich TM, Quadros FLF. 2020. Estimating natural grassland biomass by vegetation indices using Sentinel 2 remote sensing data. Int J Remote Sens. 41(8):2861–2876.
  • Gasparri NI, Parmuchi MG, Bono J, Karszenbaum H, Montenegro CL. 2010. Assessing multi-temporal Landsat 7 ETM + images for estimating above-ground biomass in subtropical dry forests of Argentina. J Arid Environ. 74(10):1262–1270.
  • Gitelson AA, Kaufman YJ, Stark R, Rundquist D. 2002. Novel algorithms for remote estimation of vegetation fraction. Remote Sens Environ. 80, 1:76–87.
  • Grant KM, Johnson DL, Hildebrand DV, Peddle DR. 2013. Quantifying biomass production on rangeland in southern Alberta using SPOT imagery. Can J Remote Sens. 38(6):695–708. pp
  • Hakl J, Hrevušová Z, Hejcman M, Fuksa P. 2012. The use of a rising plate meter to evaluate lucerne (Medicago sativa L.) height as an important agronomic trait enabling yield estimation. Grass Forage Sci. 67(4):589–596.
  • Hastie T, Tibshirani R, Friedman J. 2009. The elements of statistical learning. Data mining, inference, and prediction. New York (NY): Springer Science + Business Media.
  • Hilker T, Natsagdorj E, Waring RH, Lyapustin A, Wang Y. 2014. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Glob Change Biol. 20(2):418–428.
  • Hill M, Zhou Q, Sun Q, Schaaf C, Southworth J, Mishra N, Gibbes C, Bunting E, Christiansen T, Crews K. 2016. Dynamics of the relationship between NDVI and SWIR32 vegetation indices in southern Africa: implications for retrieval of fractional cover from MODIS data. Int J Remote Sens. 37(6):1476–1503.
  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ. 83(1-2):195–213.
  • Hugjliin E. 2010. Socio-economic baseline survey for Bornuur Soum, Tuv Aimag, Mongolia Sustainable Artisanal Mining Project, SADC, Mongolia.
  • Javzandulam T, Tateishi R, Sanjaa T. 2005. Analysis of vegetation indices for monitoring vegetation degradation in semi-arid and arid areas of Mongolia. Int J Environ Study. 62(2):215–225.
  • Jurgens C. 1997. The modified normalized difference vegetation index (mNDVI) a new index to determine frost damages in agriculture based on Landsat TM data. Int J Remote Sens. 18(17):3583–3594.
  • Karnieli A, Bayasgalan M, Bayarjargal Y, Agam N, Khudulmur S, Tucker CJ. 2006. Comments on the use of the vegetation health index over Mongolia. Int J Remote Sens. 27(10):2017–2024.
  • King WM, Rennie GM, Dalley DE, Dynes RA, Upsdell MP. 2010. Pasture Mass Estimation by the C-Dax Pasture Meter: regional Calibrations for New Zealand. In Proceedings of the 4th Australasian Dairy Science Symposium, Lincoln, New Zealand, 31 August–2 September 2010.
  • Kogan F, Stark R, Gitelson A, Jargalsaikhan L, Dugrajav C, Tsooj S. 2004. Derivation of pasture biomass in Mongolia from AVHRR-based vegetation health indices. Int J Remote Sens. 25(14):2889–2896.
  • Kumar L, Sinha P, Taylor S, Alqurashi AF. 2015. Review of the use of remote sensing for biomass estimation to support renewable energy generation. J Appl Remote Sens. 9(1):097696. 097696.
  • Kumar L, Mutanga O. 2017. Remote sensing of above-ground biomass. Remote Sens. 9(9):935–938.
  • Lamchin M, Park T, Lee JY, Lee WK. 2015. Monitoring of vegetation dynamics in the Mongolia using MODIS NDVIs and their relationship to rainfall by natural zone. J Indian Soc Remote Sens. 43(2):325–337.
  • Lamchin M, Lee JY, Lee WK, Lee EJ, Kim M, Lim CH, Choi HA, Kim SR. 2016. Assessment of land cover change and desertification using remote sensing technology in a local region of Mongolia. Adv Space Res. 57(1):64–77.
  • Li X, Du H, Mao F, Zhou GM, Chen L, Xing LQ, Fan WL, Xu XJ, Liu YL, Cui L, et al. 2018. Estimating bamboo forest aboveground biomass using EnKF-assimilated MODIS LAI spatiotemporal data and machine learning algorithms. Agric for Meteorol. 256–257:445–457.
  • Louhaichi M, Borman MM, Johnson DE. 2001. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int. 16(1):65–70.
  • Lourenço P. 2021. Biomass estimation using satellite-based data, forest biomass - from trees to energy, Ana Cristina Gonçalves, Adélia Sousa and Isabel Malico, IntechOpen, Available from: https://www.intechopen.com/chapters/73176.
  • Lu D. 2005. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int J Remote Sens. 26(12):2509–2525.
  • Lu D, Chen Q, Wang G, Liu L, Li G, Moran E. 2016. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int J Digital Earth. 9(1):63-105.
  • Lussem U, Bolten A, Menne J, Gnyp ML, Schellberg J, Bareth G. 2019. estimating biomass in temperate grassland with high resolution canopy surface models from UAV-based RGB images and vegetation indices. J Appl Rem Sens. 13(03):1. 034525.
  • Matese A, Toscano P, Di Gennaro SF, Genesio L, Vaccari FP, Primicerio J, Belli C, Zaldei A, Bianconi R, Gioli B. 2015. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sens. 7(3):2971–2990.
  • Meehan M, Sedivec K, Printz J, Brummer F. 2018. Determining Carrying Capacity and Stocking Rates for Range and Pasture in North Dakota, North Dakota State University Extension, USA, p. 12.
  • Mills P. 2011. Efficient statistical classification of satellite measurements. Int J Remote Sens. 32(21):6109–6132.
  • Narangarav D, Lin C. 2011. Investigation of vegetation dynamics of Mongolia using time series of NDVI in response to temperature and precipitation. Mongolian J Biol Sci. 9(1–2):9–17.
  • Otgonbayar M, Clement A, Jonathan C, Damdinsuren A. 2018. Mapping pasture biomass in Mongolia using Partial Least Squares, Random Forest regression and Landsat 8 imagery. Int J Remote Sens. 40:1–23.
  • NSO. 2021. Report of National Statistical Office (NSO) of Mongolia.
  • Pflugmacher D, Cohen WB, Kennedy RE, Yang Z. 2014. Using Landsat-derived disturbance and recovery history and lidar to map forest biomass dynamics. Remote Sens Environ. 151:124–137.
  • Poley LG, McDermid GJ. 2020. A systematic review of the factors influencing the estimation of vegetation aboveground biomass using unmanned aerial systems. Remote Sens. 12(7):1052.
  • Psomas A, Kneubühler M, Huber S, Itten K, Zimmermann NE. 2011. Hyperspectral remote sensing for estimating aboveground biomass and for exploring species richness patterns of grassland habitats. Int J Remote Sens. 32(24):9007–9031.
  • Purevdorj TS, Tateishi R, Ishiyama T, Honda Y., 1998. Relationships between percent vegetation cover and vegetation indices. Int J Remote Sens. 19(18):3519–3535.
  • Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S. 1994. A modified soil adjusted vegetation index. Remote Sens Environ. 48, 2:119–126.
  • Rasanen A, Juutinen S, Aurela M, Virtanen T. 2017. Modeling above-ground biomass across multiple circum-arctic tundra sites using high spatial resolution remote sensing. EGU General Assembly Conference Abstracts, pp. 4741.
  • Richardson AJ, Weigand C. 1977. Distinguishing vegetation from soil background information. Photogramm Eng Remote Sens. 43(12):1541-1552.
  • Richter K, Hank TB, Mauser W, Atzberger C. 2012. Derivation of biophysical variables from earth observation data: validation and statistical measures. J Appl Remote Sens. 6(1):063557–1. 063557.
  • Rodriguez-Galiano VF, Ghimire B, Rogan J, Chica-Olmo M, Rigol-Sanchez JP. 2012. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J Photogramm Remote Sens. 67:93–104.
  • Roujean JL, Breon FM. 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens Environ. 51, 3:375–384.
  • Rouse J. Jr. 1974. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA Technical Reports Server (NTRS) 19750020419, Texas, USA.
  • Sentinel-2 User Handbook. 2015. ESA Standard Document. ESA, 64.
  • Sluiter R, Pebesma EJ. 2010. Comparing techniques for vegetation classification using multi- and hyperspectral images and ancillary environmental data. Int J Remote Sens. 31(23):6143–6161.
  • Song XP, Huang W, Hansen MC, Potapov P. 2021. An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping. Sci Remote Sens. 3:100018. volumeISSN 2666-0172,
  • Special Report. 2017. Report of FAO/WFP crop and livestock assessment mission to Mongolia, Rome, Italy, p. 44.
  • Sripada RP, Heiniger RW, White JG, Weisz R. 2005. Aerial color infrared photography for determining late-season nitrogen requirements in corn. Agron J. 97, 5:1443–1451.
  • Sternberg T, Tsolmon R, Middleton N, Thomas D. 2011. Tracking desertification on the Mongolian steppe through NDVI and field-survey data. Int J Digital Earth. 4(1):50–64.
  • Takahashi HG, Yoshikane T, Hara M, Takata K, Yasunari T. 2010. High-resolution modelling of the potential impact of land surface conditions on regional climate over Indochina associated with the diurnal precipitation cycle. Int J Climatol. 30(13):2004–2020.
  • Todd SW, Hoffer RM, Milchunas DG. 1998. biomass estimation on grazed and ungrazed rangelands using spectral indices. Int J Remote Sens. 19(3):427–438.
  • Tserendash S. 2006. Theoretical basis for pasture use. Ulaanbaatar: EDO publishing Co., LTD.
  • Vaglio LG, Chen Q, Lindsell J, Coomes D, Del FF, Guerriero L, Pirotti F, Valentini R. 2014. Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data. ISPRS J Photogramm Remote Sens. 89:49–58.
  • Vincini M, Frazzi E, D’Alessio P. 2007. Comparison of narrow-band and broad-band vegetation indexes for canopy chlorophyll density estimation in sugar beet. In J. V. Stafford (Ed.), Precision agriculture ‘07: Proceedings of the 6th European Conference on Precision Agriculture, pp. 189–196.
  • Wang F, Huang J, Tang Y, Wang X. 2007. New vegetation index and its application in estimating leaf area index of rice. Rice Sci. 4:195–203.
  • Wang YY, Wu GL, Deng L, Tang ZS, Wang KB, Sun WY, Shangguan ZP. 2017. Prediction of aboveground grassland biomass on the Loess Plateau, China, using a random forest algorithm. Sci Rep. 7(1):6940.
  • Wang J, Xiao X, Bajgain R, Starks P, Steiner J, Doughty RB Chang Q. 2019. Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images. ISP RS J Photogram Remote Sens. 154(June):189–201.
  • Wang S, Zhang Y, Ju W, Qiu B, Zhang Z. 2020. Tracking the seasonal and inter–annual variations of global gross primary production during last four decades using satellite near–infrared reflectance data. Sci Total Environ. 755(Pt 2):142569–142510. 1016/j.scitotenv.2020.142569.
  • Xie Y, Sha Z, Yu M, Bai Y, Zhang L. 2009. A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China. Ecol Modell. 220:1810–1818.
  • Zeng N, He H, Ren X, Zhang L, Zeng Y, Fan J, Li Y, Niu Z, Zhu X, Chang Q. 2020. The utility of fusing multi-sensor data spatio-temporally in estimating grassland aboveground biomass in the three-river headwaters region of China. Int J Remote Sens. 41:7068–7089.
  • Zeng N, Ren X, He H, Zhang L. 2021. Estimating the grassland aboveground biomass in the Three-River Headwater Region of China using machine learning and Bayesian model averaging. Environ Res Lett. 16:114020.
  • Zhang B, Wu D, Zhang L, Jiao Q, Li Q. 2012. Application of hyperspectral remote sensing for environment monitoring in mining areas. Environ. Earth Sci. 65(3):649–658.
  • Zhang H, Sun Y, Chang L, Qin Y, Chen J, Qin Y, Du J, Yi S, Wang Y. 2018. Estimation of grassland canopy height and aboveground biomass at the quadrat scale using unmanned aerial vehicle. Remote Sens. 10:851.
  • Zhang L, Furumi S, Muramatsu K, Fujiwara N, Daigo M, Zhang L. 2007. A new vegetation index based on the universal pattern decomposition method. Int J Remote Sens. 28:107–124.
  • Zhang J, Zhang L, Liu X, Qiao Q. 2019. Research on sustainable development in an alpine pastoral area based on equilibrium analysis between the grassland yield, livestock carrying capacity, and animal husbandry population. Sustainability. 11:4659.
  • Zhu X, Liu D. 2015. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS J Photogramm Remote Sens. 102:222–231.