1,377
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multidecadal evaluation of changes in coffee-growing areas using Landsat data in Central Highlands, Vietnam

ORCID Icon, , , &
Article: 2204099 | Received 19 Aug 2021, Accepted 13 Apr 2023, Published online: 19 Apr 2023

References

  • Adriana S. 2019. Top coffee producing countries. Quebec, Canada.
  • Al-Doski J, Hassan FM, Mossa HA, Najim AA. 2022. Incorporation of digital elevation model, Normalized Difference Vegetation Index, and Landsat-8 data for land-use/land-cover mapping. Photogramm Eng Remote Sensing. 88(8):507–516.
  • Ali A. 2021. Data-driven based machine learning models for predicting the deliverability of underground natural gas storage in salt caverns. Energy. 15229:120648.
  • Ashburn P. 1978. The vegetative index number and crop identification. Proceedings of the LACIE Symposium Proceedings of the Technical Session.
  • Baret F, Guyot G. 1991. Potentials and limits of vegetation indexes for LAI and APAR assessment. Remote Sens Environ. 35(2-3):161–173.
  • Belgiu M, Drăguţ L. 2016. Random forest in remote sensing: a review of applications and future directions. ISPRS J Photogramm Remote Sens. 114:24–31.
  • Breiman L. 2001. Random forests. Machine Learning. 45(1):5–32.
  • Breiman L, Friedman J, Olshen R, Stone C. 1984. Classification and regression trees. New York: Hall.
  • Broge NH, Leblanc E. 2001. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens Environ. 76(2):156–172.
  • Cairns M. 2017. Shifting cultivation policies: balancing environmental and social sustainability.
  • Caruana R, Karampatziakis N, Yessenalina A. 2008. An empirical evaluation of supervised learning in high dimensions.
  • Caruana R, Niculescu-Mizil A. 2006. An empirical comparison of supervised learning algorithms. Proceedings of the 23rd International Conference on Machine Learning - ICML '06. 06/25; p. 161–168.
  • Cayuela L, Benayas JMR, Echeverria C. 2006. Clearance and fragmentation of tropical montane forests in the Highlands of Chiapas, Mexico (1975-2000). For Ecol Manage. 226(1-3):208–218.
  • Ceccato P, Flasse S, Gregoire JM. 2002. Designing a spectral index to estimate vegetation water content from remote sensing data - Part 2. Validation and applications. Remote Sens Environ. 82(2-3):198–207.
  • CGIAR. 2016. The drought crisis in the Central Highlands of Vietnam. Hanoi, Vietnam.
  • Chemura A, Mutanga O, Dube T. 2017a. Integrating age in the detection and mapping of incongruous patches in coffee (Coffea arabica) plantations using multi-temporal Landsat 8 NDVI anomalies. Int J Appl Earth Obs Geoinf. 57:1–13.
  • Chemura A, Mutanga O, Dube T. 2017b. Remote sensing leaf water stress in coffee (Coffea arabica) using secondary effects of water absorption and random forests. Phys Chem Earth. 100:317–324.
  • Chu L, Jiang CL, Wang TW, Li ZX, Cai CF. 2021. Mapping and forecasting of rice cropping systems in central China using multiple data sources and phenology-based time-series similarity measurement. Adv Space Res. 68(9):3594–3609.
  • Claverie M, Vermote EF, Franch B, Masek JG. 2015. Evaluation of the Landsat-5 TM and Landsat-7 ETM + surface reflectance products. Remote Sens Environ. 169:390–403.
  • Congalton RG. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ. 37(1):35–46.
  • Congalton RG, Green K. 2019. Assessing the accuracy of remotely sensed data: Principles and practices, Third Edition (3rd ed.). CRC Press. https://doi.org/10.1201/9780429052729
  • Cordero‐Sancho S, Sader SA. 2007. Spectral analysis and classification accuracy of coffee crops using Landsat and a topographic‐environmental model. Int J Remote Sens. 28(7):1577–1593.
  • Crippen RE. 1990. Calculating the vegetation index faster. Remote Sens Environ. 34(1):71–73.
  • D’haeze D, Deckers J, Raes D, Phong TA, Loi HV. 2005. Environmental and socio-economic impacts of institutional reforms on the agricultural sector of Vietnam. Agricult Ecosyst Environ. 105(1-2):59–76.
  • Dang AN, Kawasaki A. 2017. Integrating biophysical and socio-economic factors for land-use and land-cover change projection in agricultural economic regions. Ecol Modell. 344:29–37.
  • DLSO 2020. Statistical yearbook of Dak Lak. Dak Lak Department of Statistics, Buon Ma Thuot, Vietnam.
  • Dorren LKA, Maier B, Seijmonsbergen AC. 2003. Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification. For Ecol Manage. 183(1-3):31–46.
  • Eiumnoh A, Shrestha RP. 2000. Application of DEM data to Landsat image classification: evaluation in a tropical wet-dry landscape of Thailand. Photogramm Eng Remote Sens. 66:297–304.
  • Escobar-López A, Castillo-Santiago MÁ, Hernández-Stefanoni JL, Mas JF, López-Martínez JO. 2022. Identifying coffee agroforestry system types using multitemporal Sentinel-2 data and auxiliary information. Remote Sens. 14(16):3847.
  • Fahsi A, Tsegaye T, Tadesse W, Coleman T. 2000. Incorporation of digital elevation models with Landsat-TM data to improve land cover classification accuracy. For Ecol Manage. 128(1-2):57–64.
  • FAO. 1996. Guidelines for land-use planning. Food and Agriculture Organization of the United Nations, Rome, Italy.
  • Feng M, Sexton JO, Huang CQ, Masek JG, Vermote EF, Gao F, Narasimhan R, Channan S, Wolfe RE, Townshend JR. 2013. Global surface reflectance products from Landsat: assessment using coincident MODIS observations. Remote Sens Environ. 134:276–293.
  • Flood N. 2013. Seasonal composite Landsat TM/ETM plus images using the medoid (a multi-dimensional median). Remote Sens. 5(12):6481–6500.
  • Gao BC. 1996. NDWI - A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ. 58(3):257–266.
  • Gao X, Huete AR, Ni WG, Miura T. 2000. Optical-biophysical relationships of vegetation spectra without background contamination. Remote Sens Environ. 74(3):609–620.
  • Ge GBT, Shi ZJ, Zhu YJ, Yang XH, Hao YG. 2020. Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery: performance assessment of four machine learning algorithms. Global Ecol Conserv. 22:e00971.
  • Gitelson AA. 2004. Wide Dynamic Range Vegetation Index for remote quantification of biophysical characteristics of vegetation. J Plant Physiol. 161(2):165–173. Epub 2004/03/17.
  • Gitelson AA, Gritz Y, Merzlyak MN. 2003. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J Plant Physiol. 160(3):271–282. Epub 2003/05/17.
  • Gitelson AA, Kaufman YJ, Merzlyak MN. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens Environ. 58(3):289–298. Epub 1996/12/01.
  • Gitelson A, Merzlyak M, Zur Y, Stark R, Gritz U. 2001. Non-destructive and remote sensing techniques for estimation of vegetation status. Third European Conference on Precision Agriculture, Montpelier, France.
  • Glenn EP, Nagler PL, Huete AR. 2010. Vegetation index methods for estimating evapotranspiration by remote sensing. Surv Geophys. 31(6):531–555.
  • Gobron N, Pinty B, Verstraete MM, Widlowski JL. 2000. Advanced vegetation indices optimized for up-coming sensors: design, performance, and applications. IEEE Trans Geosci Remote Sensing. 38(6):2489–2505.
  • GSO. 2020. Statistical yearbook of Vietnam.
  • Guerschman JP, Hill MJ, Renzullo LJ, Barrett DJ, Marks AS, Botha EJ. 2009. Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors. Remote Sens Environ. 113(5):928–945.
  • Gusso A. 2018. Canopy temperatures distribution over soybean crop fields using satellite data in the Amazon biome frontier. Eur J Remote Sens. 51(1):901–910. Epub 2018/01/01.
  • Haboudane D, Miller JR, Pattey E, Zarco-Tejada PJ, Strachan IB. 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens Environ. 90(3):337–352.
  • Hancock DW, Dougherty CT. 2007. Relationships between blue- and red-based vegetation indices and leaf area and yield of alfalfa. Crop Sci. 47(6):2547–2556.
  • Hardisky M, Klemas V, Smart a 1983. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogramm Eng Remote Sens. 48:77–84.
  • Holben BN. 1986. Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens. 7(11):1417–1434. Epub 1986/11/01.
  • Huete A. 1997. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens Environ. 59(3):440–451.
  • Huete AR. 1988. A soil-adjusted vegetation index (SAVI). Remote Sens Environ. 25(3):295–309. Epub 1988/08/01.
  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ. 83(1-2):195–213.
  • Hunt ER, Daughtry CST, Eitel JUH, Long DS. 2011. Remote sensing leaf chlorophyll content using a visible band index. Agron J. 103(4):1090–1099.
  • Hunt DA, Tabor K, Hewson JH, Wood MA, Reymondin L, Koenig K, Schmitt-Harsh M, Follett F. 2020. Review of remote sensing methods to map coffee production systems. Remote Sens. 12(12):2041.
  • ICO. 2020. World coffee production. International Coffee Organization, London, UK.
  • Ishwaran H. 2007. Variable importance in binary regression trees and forests. Electron J Statist. 1:519–537.
  • Jackson RD, Idso SB, Reginato RJ, Pinter PJ. 1981. Canopy temperature as a crop water stress indicator. Water Resour Res. 17(4):1133–1138.
  • Jain P, Coogan S, Subramanian S, Crowley M, Taylor SW, Flannigan M. 2020. A review of machine learning applications in wildfire science and management. Environ. Rev. 28(4): 478–505
  • Jia K, Liang SL, Zhang N, Wei XQ, Gu XF, Zhao X, Yao YJ, Xie XH. 2014. Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data. ISPRS J Photogramm Remote Sens. 93:49–55.
  • Jiang ZY, Huete AR, Didan K, Miura T. 2008. Development of a two-band enhanced vegetation index without a blue band. Remote Sens Environ. 112(10):3833–3845.
  • Jiménez‐Muñoz JC, Sobrino JA. 2003. A generalized single‐channel method for retrieving land surface temperature from remote sensing data. J Geophys Res. 108(D22): 4688–4694.
  • Kanke Y, Tubana B, Dalen M, Harrell D. 2016. Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy fields. Precision Agric. 17(5):507–530.
  • Kaufman YJ, Tanre D. 1992. Atmospherically resistant vegetation index (Arvi) for EOS-MODIS. IEEE Trans Geosci Remote Sensing. 30(2):261–270.
  • Kawakubo FS, Machado RPP. 2016. Mapping coffee crops in southeastern Brazil using spectral mixture analysis and data mining classification. Int J Remote Sens. 37(14):3414–3436.
  • Kelley LC, Pitcher L, Bacon C. 2018. Using google earth engine to map complex shade-grown coffee landscapes in northern Nicaragua. Remote Sens. 10(6):952.
  • Kim D-C, Hoang TQ. 2013. Development of coffee production and land mobility in Dak Lak, Vietnam. J Econ Geograph Soc Korea. 16:359–371.
  • Kissinger G. 2020. Policy responses to direct and underlying drivers of deforestation: examining rubber and coffee in the Central Highlands of Vietnam. Forests. 11(7):733.
  • Koninck R. 1999. Deforestation in Viet Nam/Rodolphe de Koninck. International Development Research Centre. Ottawa, Ontario, Canada.
  • Kordi F, Yousefi H. 2022. Crop classification based on phenology information by using time series of optical and synthetic-aperture radar images. Remote Sens Appl: soc Environ. 27:100812. Epub 2022/08/01.
  • Körting TS, Garcia Fonseca LM, Câmara G. 2013. GeoDMA-geographic data mining analyst. Comput Geosci. 57:133–145.
  • Krishnan S. 2017. Sustainable coffee production. Oxford Res. Ency. of Environ.l Sci., Oxford University Press. https://doi.org/10.1093/acrefore/9780199389414.013.224
  • Langford M, Bell W. 1997. Land cover mapping in a tropical hillsides environment: a case study in the Cauca region of Colombia. Int J Remote Sens. 18(6):1289–1306.
  • Lawson CE, Martí JM, Radivojevic T, Jonnalagadda SVR, Gentz R, Hillson NJ, Peisert S, Kim J, Simmons BA, Petzold CJ, et al. 2021. Machine learning for metabolic engineering: a review. Metab Eng. 63:34–60.
  • Le QT, Dang KB, Giang TL, Tong THA, Nguyen VG, Nguyen TDL, Yasir M. 2022. Deep learning model development for detecting coffee tree changes based on sentinel-2 imagery in Vietnam. IEEE Access. 10:109097–109107.
  • Liaw A, Wiener M. 2002. Classification and regression by random forest. Rnews.2,18-22. http://CRAN.R-project.org/doc/Rnews.
  • Loh W-Y. 2002. Regression trees with unbiased variable selection and interaction detection. Statistica Sin. 12:361–386.
  • Loh W-Y, Shih Y-s 1997. Split selection methods for classification trees. Statistica Sin 7:815-840.
  • Louhaichi M, Borman MM, Johnson DE. 2001. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int. 16(1):65–70. Epub 2001/03/01.
  • Louppe G, Wehenkel L, Sutera A, Geurts P. 2013. Understanding variable importances in Forests of randomized trees. NIPS'13: Proceedings of the 26th International Conference on Neural Information Processing Systems. 1:431–439.
  • Lu Z. 2021. Computational discovery of energy materials in the era of big data and machine learning: a critical review. Materials Reports: energy. 1(3):100047. Epub 2021/06/28.
  • Lymburner L, Beggs PJ, Jacobson CR. 2000. Estimation of canopy-average surface-specific leaf area using Landsat TM data. Photogramm Eng Remote Sens. 66:183–191.
  • Maleki S, Khormali F, Mohammadi J, Bogaert P, Bodaghabadi MB. 2020. Effect of the accuracy of topographic data on improving digital soil mapping predictions with limited soil data: an application to the Iranian loess plateau. Catena. 195:104810.
  • Mansaray LR, Wang F, Huang J, Yang L, Kanu AS. 2020. Accuracies of support vector machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets. Geocarto Int. 35(10):1088–1108.
  • Martinez‐Castillo C, Astray G, Mejuto JC, Simal‐Gandara J. 2020. Random forest, artificial neural network, and support vector machine models for honey classification. eFood. 1(1):69–76.
  • Maskell G, Chemura A, Nguyen H, Gornott C, Mondal P. 2021. Integration of Sentinel optical and radar data for mapping smallholder coffee production systems in Vietnam. Remote Sens. Environ. 266:112709.
  • Mboga N, Persello C, Bergado JR, Stein A. 2017. Detection of informal settlements from VHR satellite images using convolutional neural networks. Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS); 23–28 July 2017.
  • Meyfroidt P, Phuong VT, Anh HV. 2013. Trajectories of deforestation, coffee expansion and displacement of shifting cultivation in the Central Highlands of Vietnam. Global Environ Change-Human Policy Dimensions. 23(5):1187–1198.
  • Meyfroidt P, Vu TP, Hoang VA. 2013. Trajectories of deforestation, coffee expansion and displacement of shifting cultivation in the Central Highlands of Vietnam. Global Environ Change. 23(5):1187–1198.
  • Mi C, Huettmann F, Guo Y, Han X, Wen L. 2017. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. PeerJ. 5:e2849. Epub 2017/01/18.
  • Miller ED, Jones ML, Henry MM, Stanfill B, Jankowski E. 2019. Machine learning predictions of electronic couplings for charge transport calculations of P3HT. AIChE J. 65(12):e16760.
  • Miranda JR, Alves MD, Pozza EA, Neto HS. 2020. Detection of coffee berry necrosis by digital image processing of landsat 8 oli satellite imagery. Int J Appl Earth Obs Geoinf. 85:101983.
  • Mohajane M, Costache R, Karimi F, Pham QB, Essahlaoui A, Nguyen H, Laneve G, Oudija F. 2021. Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area. Ecol Indic. 129:107869.
  • Mountford GL, Atkinson PM, Dash J, Lankester T, Hubbard S. 2017. Chapter 4 - Sensitivity of vegetation phenological parameters. From Satellite Sensors to Spatial Resolution and Temporal Compositing Period. In: Sensitivity analysis in earth observation modelling, edited by George P. P. and Prashant K. S., Elsevier, Amsterdam, Netherlands; p. 75–90.
  • Müller D. 2002. Land use dynamics in the central highlands of Vietnam: a spatial model combining village survey data with satellite imagery interpretation. Agricult Econ. 27(3):333–354.
  • Nguyen HT, Nguyen LV, de Bie CAJM, Ciampitti IA, Nguyen DA, Nguyen MV, Nieto L, Schwalbert R, Nguyen LV. 2020. Mapping maize cropping patterns in Dak Lak, Vietnam through MODIS EVI time series. Agronomy. 10:478. https://doi.org/10.3390/agronomy10040478
  • Nolasco M, Ovando G, Sayago S, Magario I, Bocco M. 2021. Estimating soybean yield using time series of anomalies in vegetation indices from MODIS. Int J Remote Sens. 42(2):405–421.
  • Ortega-Huerta MA, Komar O, Price KP, Ventura HJ. 2012. Mapping coffee plantations with Landsat imagery: an example from El Salvador. Int J Remote Sens. 33(1):220–242. Epub 2012/01/10.
  • Peng W, Li S, He Z, Ning S, Liu Y, Su Z. 2019. Random forest classification of rice planting area using multi-temporal polarimetric Radarsat-2 data. Proceedings of the. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium; 28 July-2 Aug. 2019.
  • Pinty B, Verstraete MM. 1992. GEMI: a non-linear index to monitor global vegetation from satellites. Vegetatio. 101(1):15–20.
  • Pontius RG, Millones M. 2011. Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int J Remote Sens. 32(15):4407–4429.
  • Prasad AM, Iverson LR, Liaw A. 2006. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems. 9(2):181–199.
  • Qi SH, Brown DG, Tian Q, Jiang LG, Zhao TT, Bergen KA. 2009. Inundation extent and flood frequency mapping using LANDSAT imagery and digital elevation models. Gisci Remote Sens. 46(1):101–127.
  • Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S. 1994. A modified soil adjusted vegetation index. Remote Sens Environ. 48(2):119–126.
  • Richardsons AJ, Wiegand A. 1977. Distinguishing vegetation from soil background information. Photogramm Eng Remote Sens. 43:1541–1552.
  • Rodriguez-Galiano VF, Chica-Olmo M, Abarca-Hernandez F, Atkinson PM, Jeganathan C. 2012. Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens Environ. 121:93–107.
  • Rondeaux G, Steven M, Baret F. 1996. Optimization of soil-adjusted vegetation indices. Remote Sens Environ. 55(2):95–107.
  • Roy DP, Ju JC, Kline K, Scaramuzza PL, Kovalskyy V, Hansen M, Loveland TR, Vermote E, Zhang CS. 2010. Web-enabled Landsat Data (WELD): Landsat ETM plus composited mosaics of the conterminous United States. Remote Sens Environ. 114(1):35–49.
  • Roy MH, Larocque D. 2012. Robustness of random forests for regression. J Nonparametric Stat. 24(4):993–1006.
  • Roy DP, Wulder MA, Loveland TR, Woodcock CE, Allen RG, Anderson MC, Helder D, Irons JR, Johnson DM, Kennedy R, et al. 2014. Landsat-8: science and product vision for terrestrial global change research. Remote Sens Environ. 145:154–172.
  • Saini RK, Ghosh S. 2018. Crop classification on single date Sentinel-2 imagery using random forest and suppor vector machine. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-5:683–688. https://doi.org/10.5194/isprs-archives-XLII-5-683-2018
  • Sandholt I, Rasmussen K, Andersen J. 2002. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens Environ. 79(2-3):213–224.
  • Santos É, Macedo L, Tundisi LL, Ataide JA, Camargo GA, Alves RC, Oliveira MBPP, Mazzola PG. 2021. Coffee by-products in topical formulations: a review. Trends Food Sci Technol. 111:280–291.
  • Schmitt-Harsh M. 2013. Landscape change in Guatemala: driving forces of forest and coffee agroforest expansion and contraction from 1990 to 2010. Appl Geogr. 40:40–50.
  • Schmitt-Harsh M, Sweeney SP, Evans TP. 2013. Classification of coffee-forest landscapes using landsat TM imagery and spectral mixture analysis. Photogramm Eng Remote Sens. 79(5):457–468.
  • Sesnie SE, Gessler PE, Finegan B, Thessler S. 2008. Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments. Remote Sens Environ. 112(5):2145–2159.
  • Sheykhmousa M, Mahdianpari M, Ghanbari H, Mohammadimanesh F, Ghamisi P, Homayouni S. 2020. Support vector machine versus random forest for remote sensing image classification: a meta-analysis and systematic review. IEEE J Sel Top Appl Earth Observ Remote Sens. 13:6308–6325.
  • Shiferaw H, Bewket W, Eckert S. 2019. Performances of machine learning algorithms for mapping fractional cover of an invasive plant species in a dryland ecosystem. Ecol Evol. 9(5):2562–2574. Epub 2019/03/21.
  • Sobrino JA, Jimenez-Munoz JC, Paolini L. 2004. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens Environ. 90(4):434–440. 30
  • Son N-T, Chen C-F, Chen C-R, Minh V-Q. 2017. Assessment of Sentinel-1A data for rice crop classification using random forests and support vector machines. Geocarto Int. 33(6):587–601 https://doi.org/10.1080/10106049.2017.1289555.
  • Speiser JL. 2021. A random forest method with feature selection for developing medical prediction models with clustered and longitudinal data. J Biomed Inform. 117:103763. Epub 2021/03/31.
  • Statista. 2019. Global leading countries based on coffee area. Food and Agriculture Organization of the United Nations, New York, United States.
  • Stibig H-J, Belward AS, Roy PS, Rosalina-Wasrin U, Agrawal S, Joshi PK, Beuchle R, Fritz S, Mubareka S, Giri C, et al. 2007. A land-cover map for South and Southeast Asia derived from SPOT-VEGETATION data. J Biogeography. 34(4):625–637.
  • Tan JB, Zuo JQ, Xie XY, Ding MQ, Xu ZK, Zhou FB. 2021. MLAs land cover mapping performance across varying geomorphology with Landsat OLI-8 and minimum human intervention. Ecol Inf. 61:101227.
  • Tanre D, Holben BN, Kaufman YJ. 1992. Atmospheric correction algorithm for Noaa-Avhrr products – Theory and application. IEEE Trans Geosci Remote Sensing. 30(2):231–248.
  • Thao NT, Khoi DN, Denis A, Viet LV, Wellens J, Tychon B. 2022. Early prediction of coffee yield in the central highlands of Vietnam using a statistical approach and satellite remote sensing vegetation biophysical variables. Remote Sens. 14(13):2975.
  • Tibshirani R, Hastie T, Narasimhan B, Chu G. 2002. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A. 99(10):6567–6572. Epub 2002/05/16.
  • Tridawati A, Wikantika K, Susantoro TM, Harto AB, Darmawan S, Yayusman LF, Ghazali MF. 2020. Mapping the distribution of coffee plantations from multi-resolution, multi-temporal, and multi-sensor data using a random forest algorithm. Remote Sens. 12(33):3933. https://doi.org/10.3390/rs12233933
  • Tucker CJ. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ. 8(2):127–150.
  • Tucker CJ, Elgin JH, McMurtrey JE, Fan CJ. 1979. Monitoring corn and soybean crop development with hand-held radiometer spectral data. Remote Sens Environ. 8(3):237–248. Epub 1979/08/01.
  • Turner DP, Cohen WB, Kennedy RE, Fassnacht KS, Briggs JM. 1999. Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sens Environ. 70(1):52–68.
  • Uttaruk Y, Laosuwan T. 2016. Remote sensing based vegetation indices for estimating above ground carbon sequestration in orchards. AgricultForest. 62(4):93–201.
  • Velásquez D, Sánchez A, Sarmiento S, Toro M, Maiza M, Sierra B. 2020. A method for detecting coffee leaf rust through wireless sensor networks, remote sensing, and deep learning: case study of the Caturra Variety in Colombia. Appl Sci. 10(2):697.
  • Velásquez D, Sánchez A, Sarmiento S, Velásquez C, Toro M, Montoya E, Trefftz H, Maiza M, Sierra B. 2021. A cyber-physical data collection system integrating remote sensing and wireless sensor networks for coffee leaf rust diagnosis. Sensors. 21(16):5474. https://doi.org/10.3390/s21165474
  • Ver Hoef JM, Cressie N, Fisher RN, Case TJ. 2001. Uncertainty and spatial linear models for ecological data. In C. T. Hunsaker, M. F. Goodchild, M. A. Friedl & T. J. Case (Eds.), Spatial uncertainty in ecology: implications for remote sensing and GIS applications. New York, NY: Springer New York; p. 214–237.
  • Wang F-m, Huang J-f, Tang Y-l, Wang X-z 2007. New vegetation index and its application in estimating leaf area index of rice. Rice Sci. 14(3):195–203. Epub 2007/09/01.
  • Wright MN, Ziegler A. 2017. ranger: a fast implementation of random forests for high dimensional data in C++ and R. J Stat Soft. 77(1):1–17. https://doi.org/10.18637/jss.v077.i01
  • Xu HQ. 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens. 27(14):3025–3033.
  • Xue JR, Su BF. 2017. Significant remote sensing vegetation indices: a review of developments and applications. J Sens. 2017:1–17. Epub 2017/05/23.
  • Yang CG, Everitt JH, Bradford JM. 2007. Airborne hyperspectral imagery and linear spectral unmixing for mapping variation in crop yield. Precision Agric. 8(6):279–296.
  • Yang Z, Willis P, Mueller R. 2008. Impact of band-ratio enhanced AWIFS image on crop classification accuracy.
  • Yin H, Tan B, Frantz D, Radeloff VCC. 2022. Integrated topographic corrections improve forest mapping using Landsat imagery. Int J Appl Earth Obs Geoinf. 108:102716.
  • Yu YF, Saatchi S, Heath LS, LaPoint E, Myneni R, Knyazikhin Y. 2010. Regional distribution of forest height and biomass from multisensor data fusion. J Geophys Res Biogeosci. 115:0–12.
  • Zeng YL, Hao DL, Huete A, Dechant B, Berry J, Chen JM, Joiner J, Frankenberg C, Bond-Lamberty B, Ryu Y, et al. 2022. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nat Rev Earth Environ. 3(7):477–493.
  • Zha Y, Gao J, Ni S. 2003. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens. 24(3):583–594.