907
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Inversion of intertidal zone topography based on optimized random forest regression characteristic parameters

, , , , , , & show all
Article: 2213196 | Received 14 Dec 2022, Accepted 08 May 2023, Published online: 16 May 2023

References

  • Andriolo U, Almeida LP, Almar R. 2018. Coupling terrestrial LiDAR and video imagery to perform 3D intertidal beach topography. Coastal Eng. 140:232–239.
  • Beijma S, Comber A, Lamb A. 2014. Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sens Environ. 149:118–129.
  • Bishop-Taylor R, Sagar S, Lymburner L, Beaman RJ. 2019. Between the tides: modelling the elevation of Australia’s exposed intertidal zone at continental scale. Estuarine Coastal Shelf Sci. 223:115–128.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32.
  • Breiman L, Friedman JH, Olshen RA, Stone CJ. 2017. Classification and regression trees. Abingdon: Routledge.
  • Brunier G, Oiry S, Lachaussée N, Barillé L, Fouest VL, Méléder V. 2022. A machine-learning approach to intertidal mudflat mapping combining multispectral reflectance and geomorphology from UAV-based monitoring. Remote Sens. 14(22):5857.
  • Casas A, Riaño D, Ustin S, Dennison P, Salas J. 2014. Estimation of water-related biochemical and biophysical vegetation properties using multitemporal airborne hyperspectral data and its comparison to MODIS spectral response. Remote Sens Environ. 148:28–41.
  • Cham DD, Son NT, Minh NQ, Thanh NT, Dung TT. 2020. An analysis of shoreline changes using combined multitemporal remote sensing and digital evaluation model. Civ Eng J. 6(1):1–10.
  • Chen J, Wang Y, Zhang R, Lin X. 2007. Stability study on the Dongsha sandbanks in submarine radial sand ridges field off Jiangsu coast. Ocean Eng. 25:105–113.
  • Chen W, Zhang D, Cui D, Lv L, Xie W, Shi S, Hou Z. 2018. Monitoring spatial and temporal changes in the continental coastline and the intertidal zone in Jiangsu province, China. Acta Geograph Sin. 73:1365–1380.
  • Costanza R, d‘Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O'Neill RV, Paruelo J, et al. 1997. The value of the world’s ecosystem services and natural capital. Nature. 387(6630):253–260.
  • Dai W, Li H, Zhou Z, Cybele S, Lu C, Zhao K, Zhang X, Yang H, Li D. 2018. UAV photogrammetry for elevation monitoring of intertidal mudflats. J Coast Res. 85:236–240.
  • Ebrahimy H, Aghighi H, Azadbakht M, Amani M, Mahdavi S, Matkan AA. 2021. Downscaling MODIS land surface temperature product using an adaptive random forest regression method and Google Earth Engine for a 19-years spatiotemporal trend analysis over Iran. IEEE J Sel Top Appl Earth Observ Remote Sens. 14:2103–2112.
  • Erlandson JM. 2008. Racing a rising tide: global warming, rising seas, and the erosion of human history. J Island Coast Archaeol. 3(2):167–169.
  • Gao S. 2009. Modeling the preservation potential of tidal flat sedimentary records, Jiangsu coast, eastern China. Cont Shelf Res. 29(16):1927–1936.
  • Gao W, Shen F, Tan K, Zhang W, Liu Q, Lam NS, Ge J. 2021. Monitoring terrain elevation of intertidal wetlands by utilising the spatial-temporal fusion of multi-source satellite data: a case study in the Yangtze (Changjiang) Estuary. Geomorphology. 383(2021):107683.
  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. 2017. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ. 202:18–27.
  • Group, G.C. GEBCO_2022 Grid. 2022. DOI:10.5285/e0f0bb80-ab44-2739-e053-6c86abc0289c
  • Henriques M, Catry T, Belo JR, Piersma T, Pontes S, Granadeiro JP. 2022. Combining multispectral and radar imagery with machine learning techniques to map intertidal habitats for migratory shorebirds. Remote Sens. 14(14):3260.
  • Heygster G, Dannenberg J, Notholt J. 2010. Topographic mapping of the German tidal flats analyzing SAR images with the waterline method. IEEE Trans Geosci Remote Sens. 48(3):1019–1030.
  • Hsu HJ, Huang CY, Jasinski M, Li Y, Gao H, Yamanokuchi T, Wang CG, Chang TM, Ren H, Kuo CY, et al. 2021. A semi-empirical scheme for bathymetric mapping in shallow water by ICESat-2 and Sentinel-2: a case study in the South China Sea. ISPRS J Photogramm Remote Sens. 178:1–19.
  • Jin K, Wang F, Han JQ, Shi SY, Ding WB. 2020. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982-2015. Acta Geograph Sin. 75:961–974.
  • Kuter S. 2021. Completing the machine learning saga in fractional snow cover estimation from MODIS Terra reflectance data: random forests versus support vector regression. Remote Sens Environ. 255:112294.
  • Li P, Ke Y, Wang D, Ji H, Chen S, Chen M, Lyu M, Zhou D. 2021. Human impact on suspended particulate matter in the Yellow River Estuary, China: evidence from remote sensing data fusion using an improved spatiotemporal fusion method. Sci Total Environ. 750:141612.
  • Lin Y, Fan J, Wen Q, Liu S, Li B. 2016. Primary exploration of ecological theories and technologies for delineation of ecological redline zones. Acta Ecol Sin. 36:1244–1252.
  • Liu Y, Li M, Cheng L, Li F, Chen K. 2012. Topographic mapping of offshore sandbank tidal flats using the waterline detection method: a case study on the Dongsha Sandbank of Jiangsu Radial Tidal Sand Ridges, China. Mar Geod. 35(4):362–378.
  • Liu Y, Li M, Zhou M, Yang K, Mao L. 2013. Quantitative analysis of the waterline method for topographical mapping of tidal flats: a case study in the Dongsha Sandbank, China. Remote Sens. 5(11):6138–6158.
  • Luijendijk A, Hagenaars G, Ranasinghe R, Baart F, Donchyts G, Aarninkhof S. 2018. The state of the world’s beaches. Sci Rep. 8(1):1–11.
  • Ma Y, Xu N, Liu Z, Yang B, Yang F, Wang XH, Li S. 2020. Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets. Remote Sens Environ. 250:112047.
  • Markus T, Neumann T, Martino A, Abdalati W, Brunt K, Csatho B, Farrell S, Fricker H, Gardner A, Harding D, et al. 2017. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation. Remote Sens Environ. 190:260–273.
  • McFeeters SK. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens. 17(7):1425–1432.
  • Miles A, Ilic S, Whyatt D, James MR. 2019. Characterizing beach intertidal bar systems using multieinethe LiDAR data. Earth Surf Process Landforms. 44(8):1572–1583.
  • Neumann T, Brenner A, Hancock D, Robbins J, Saba J, Harbeck K, Gibbons A, Lee J, Luthcke S, Rebold T. 2020. ATLAS/ICESat-2 L2A global geolocated photon data, version 3. Boulder (CO): NASA National Snow and Ice Data Center Distributed Active Archive Center.
  • Pelletier C, Valero S, Inglada J, Champion N, Dedieu G. 2016. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens Environ. 187:156–168.
  • Sagar S, Roberts D, Bala B, Lymburner L. 2017. Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations. Remote Sens Environ. 195:153–169.
  • Tang W, Zhao C, Lin J, Jiao C, Zheng G, Zhu J, Pan X, Han X. 2022. Improved spectral water index combined with Otsu algorithm to extract muddy coastline data. Water. 14(6):855.
  • Tao X, Zhang D. 2013. Inversion of tidal flat elevation based on hyperspectral remote sensing. Adv Mar Sci. 31:498–507.
  • Thomas N, Pertiwi AP, Traganos D, Lagomasino D, Poursanidis D, Moreno S, Fatoyinbo L. 2021. Spaceinbois marine sciencengation based on hyperspectral remote sensinguddy coastland sentinelis. Geophys Res Lett. 48(6):e2020GL092170.
  • Wang JS, Bi RT, He P, Xu LS, Liu ZC, Cao CB. 2023. Dynamic characteristics of NDVI during main growth seasons in the Chinese Loess Plateau effect by climate change. Chin J Ecol. 42(01):67–76.
  • Wang N, Chen K, Lu P, Chen Y, Zhang J, Wang Y. 2019. Impact of a water–sediment regulation scheme on the hydrodynamics and sediment conditions in the Sheyang Estuary. Estuarine Coastal Shelf Sci. 218:349–358.
  • Wang X, Wen Z, Liu G, Tao H, Song K. 2022. Remote estimates of total suspended matter in China’s main estuaries using Landsat images and a weight random forest model. ISPRS J Photogramm Remote Sens. 183:94–110.
  • Wang Y, Liu Y, Jin S, Sun C, Wei X. 2019. Evolution of the topography of tidal flats and sandbanks along the Jiangsu coast from 1973 to 2016 observed from satellites. ISPRS J Photogramm Remote Sens. 150:27–43.
  • Xu F, Tao J, Zhou Z, Coco G, Zhang C. 2016. Mechanisms underlying the regional morphological differences between the northern and southern radial sand ridges along the Jiangsu Coast, China. Mar Geol. 371:1–17.
  • Xu N, Ma Y, Yang J, Wang XH, Wang Y, Xu R. 2022. Deriving tidal flat topography using ICESat‐2 laser altimetry and sentinel‐2 imagery. Geophys Res Lett. 49(2):e2021GL096813.
  • Yang L, Xiao Y, Jiang J, Chen Y, Gu Y, Zhang S. 2021. Remote sensing method for extracting topographic information on tidal flats using spatial distribution features. Mar Geod. 44(5):408–431.
  • Yang L, Yu DF, Gao H, Bian XD, Liu XY, Gai YY, An DY, Zhou Y, Tang SL. 2021. Remote sensing retrieval of secchi disk depth in Jiaozhou Bay using Sentinel-2 MSI image. Infrared Laser Eng. 50:515–521.
  • Zeng J, Sun Y, Cao P, Wang H. 2022. A phenology-based vegetation index classification (PVC) algorithm for coastal salt marshes using Landsat 8 images. Int J Appl Earth Obs Geoinf. 110:102776.
  • Zhang H, Hu L, Zhang D, Zhou Y, Ma Y, Wang X, Wang Y, Xu M, Xu N. 2021. A method to derive tidal flat topography in Nantong, China using MODIS data and tidal levels. Can J Remote Sens. 47(1):17–32. 10.1080/07038992.2021.18796
  • Zhang M, Wu WT, Wang XQ, Sun Y. 2022. Topographic retrieval of the tidal flats in the Yangtze Estuary based on the dynamic tidal submergence. J Geo-Inform Sci. 24:583–596.
  • Zhang S, Xu Q, Wang H, Kang Y, Li X. 2022. Automatic waterline extraction and topographic mapping of tidal flats from SAR images based on deep learning. Geophys Res Lett. 49(2):e2021GL096007.
  • Zhi C, Wu WT, Su H. 2022. Mapping the intertidal wetlands of Fujian Province based on tidal dynamics and vegetational phonology. Natl Remote Sens Bull. 26:373–385.
  • Zhou Y, Zhang D, Deng H, Xu N, Zhang H, Hao X, Shen Y. 2021. The enhanced construction method for intertidal terrain of offshore sandbanks by remote sensing. Haiyang Xuebao. 43(12):133–143.
  • Zhu WX, Sun ZG, Li BB, Yang T, Liu Z, Peng JB, Zhu KY, Li SJ, Lou JY, Hou RX, et al. 2021. Analysis of spatial heterogeneity for soil attributes and spectral indices-based diagnosis of coastal saline-alkaline farmland stress using UAV remote sensing. J Geo-Inform Sci. 23:536–549.