842
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Global and pyramid convolutional neural network with hybrid attention mechanism for hyperspectral image classification

&
Article: 2226112 | Received 06 Apr 2023, Accepted 12 Jun 2023, Published online: 22 Jun 2023

References

  • Alsallakh B, Kokhlikyan N, Miglani V, Yuan J, Reblitz-Richardson O. 2020. Mind the Pad–CNNs can develop blind spots. arXiv preprint arXiv:201002178. doi: 10.48550/arXiv.2010.02178.
  • Bing L, Xuchu Y, Pengqiang Z, Xiong T. 2019. Deep 3D convolutional network combined with spatial-spectral features for hyperspectral image classification. Acta Geod Cartogr Sinica. 48(1):53.
  • Chen Y, Dai X, Liu M, Chen D, Yuan L, Liu Z. 2020. Dynamic convolution: attention over convolution kernels. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); Jun 2020. p. 11027–11036. doi: 10.1109/CVPR42600.2020.01104.
  • Ding Y, Zhao X, Zhang Z, Cai W, Yang N. 2021. Multiscale graph sample and aggregate network with context-aware learning for hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens. 14:4561–4572. doi: 10.1109/JSTARS.2021.3074469.
  • Dong Y, Liu Q, Du B, Zhang L. 2022. Weighted feature fusion of convolutional neural network and graph attention network for hyperspectral image classification. IEEE Trans Image Process. 31:1559–1572. doi: 10.1109/TIP.2022.3144017.
  • Du Y, Jiang J, Liu Z, Pan Y. 2022. Combining a crop growth model with CNN for underground natural gas leakage detection using hyperspectral imagery. IEEE J Sel Top Appl Earth Observ Remote Sens. 15:1846–1856. doi: 10.1109/JSTARS.2022.3150089.
  • Duta IC, Liu L, Zhu F, Shao L. 2020. Pyramidal convolution: rethinking convolutional neural networks for visual recognition. arXiv preprint arXiv:200611538. doi: 10.48550/arXiv.2006.11538.
  • Feng J, Zhao N, Shang R, Zhang X, Jiao L. 2022. Self-supervised divide-and-conquer generative adversarial network for classification of hyperspectral images. IEEE Trans Geosci Remote Sens. 60:1–17. doi: 10.1109/TGRS.2022.3202908.
  • Fu J, Liu J, Tian H, Li Y, Bao Y, Fang Z, Lu H. 2019. Dual attention network for scene segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); June 2019. p. 3141–3149. doi: 10.1109/CVPR.2019.00326.
  • Ge H, Wang L, Liu M, Zhu Y, Zhao X, Pan H, Liu Y. 2023. Two-branch convolutional neural network with polarized full attention for hyperspectral image classification. Remote Sens. 15(3):848. doi: 10.3390/rs15030848.
  • Ghaderizadeh S, Abbasi-Moghadam D, Sharifi A, Tariq A, Qin S. 2022. Multiscale dual-branch residual spectral–spatial network with attention for hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens. 15:5455–5467. doi: 10.1109/JSTARS.2022.3188732.
  • Gu Y, Liu T, Jia X, Benediktsson JA, Chanussot J. 2016. Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification. IEEE Trans Geosci Remote Sens. 54(6):3235–3247. doi: 10.1109/TGRS.2015.2514161.
  • Haut JM, Paoletti ME, Plaza J, Plaza A, Li J. 2019. Visual attention-driven hyperspectral image classification. IEEE Trans Geosci Remote Sens. 57(10):8065–8080. doi: 10.1109/TGRS.2019.2918080.
  • Hong D, Han Z, Yao J, Gao L, Zhang B, Plaza A, Chanussot J. 2022. SpectralFormer: rethinking hyperspectral image classification with transformers. IEEE Trans Geosci Remote Sens. 60:1–16. doi: 10.1109/TGRS.2021.3130716.
  • Hou Q, Zhang L, Cheng MM, Feng J. 2020. Strip pooling: rethinking spatial pooling for scene parsing. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); June 2020. p. 4002–4011. doi: 10.1109/CVPR42600.2020.00406.
  • Hou Q, Zhou D, Feng J. 2021. Coordinate attention for efficient mobile network design. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); June 2021. p. 13708–13717. doi: 10.1109/CVPR46437.2021.01350.
  • Hu W, Huang Y, Wei L, Zhang F, Li H. 2015. Deep convolutional neural networks for hyperspectral image classification. J Sens. 2015:1–12. doi: 10.1155/2015/258619.
  • Hu W, Li H, Deng Y, Sun X, Du Q, Plaza A. 2021. Lightweight tensor attention-driven ConvLSTM neural network for hyperspectral image classification. IEEE J Sel Top Signal Process. 15(3):734–745. doi: 10.1109/JSTSP.2021.3063805.
  • Ibrahim R, Shafiq MO. 2022. Augmented score-CAM: high resolution visual interpretations for deep neural networks. Knowledge-Based Syst. 252:109287. doi: 10.1016/j.knosys.2022.109287.
  • Jay S, Guillaume M. 2014. A novel maximum likelihood based method for mapping depth and water quality from hyperspectral remote-sensing data. Remote Sens Environ. 147:121–132. doi: 10.1016/j.rse.2014.01.026.
  • Kang X, Zhuo B, Duan P. 2019. Dual-path network-based hyperspectral image classification. IEEE Geosci Remote Sens Lett. 16(3):447–451. doi: 10.1109/LGRS.2018.2873476.
  • Kayhan OS, Gemert JCv. 2020. On translation invariance in CNNs: convolutional layers can exploit absolute spatial location. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 13-19 June 2020.
  • Khan A, Vibhute AD, Mali S, Patil CH. 2022. A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications. Ecol Inf. 69:101678. doi: 10.1016/j.ecoinf.2022.101678.
  • Kumar B, Dikshit O. 2017. Hyperspectral image classification based on morphological profiles and decision fusion. Int J Remote Sens. 38(20):5830–5854. doi: 10.1080/01431161.2017.1348636.
  • Lee H, Kwon H. 2017. Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans Image Process. 26(10):4843–4855. doi: 10.1109/TIP.2017.2725580.
  • Li Y, Kuang Z, Chen Y, Zhang W. 2019. Data-driven neuron allocation for scale aggregation networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Jun 2019. p. 11518–11526. doi: 10.1109/CVPR.2019.01179.
  • Li R, Zheng S, Duan C, Yang Y, Wang X. 2020. Classification of hyperspectral image based on double-branch dual-attention mechanism network. Remote Sensing. 12(3):582. doi: 10.3390/rs12030582.
  • Li Z, Cui X, Wang L, Zhang H, Zhu X, Zhang Y. 2021. Spectral and spatial global context attention for hyperspectral image classification. Remote Sens. 13(4):771. doi: 10.3390/rs13040771.
  • Liu Y, Li X, Hua Z, Xia C, Zhao L. 2022. A band selection method with masked convolutional autoencoder for hyperspectral image. IEEE Geosci Remote Sens Lett. 19:1–5. doi: 10.1109/LGRS.2022.3178824.
  • Liu H, Li W, Xia XG, Zhang M, Gao CZ, Tao R. 2022. Central attention network for hyperspectral imagery classification. IEEE Trans Neural Netw Learning Syst. [accessed 2022 March 10]:[15 p.]. doi: 10.1109/TNNLS.2022.3155114.
  • Melgani F, Bruzzone L. 2004. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens. 42(8):1778–1790. doi: 10.1109/TGRS.2004.831865.
  • Mou L, Zhu XX. 2020. Learning to pay attention on spectral domain: a spectral attention module-based convolutional network for hyperspectral image classification. IEEE Trans Geosci Remote Sens. 58(1):110–122. doi: 10.1109/TGRS.2019.2933609.
  • Nie J, Xu Q, Pan J, Guo M. 2022. Hyperspectral image classification based on multiscale spectral–spatial deformable network. IEEE Geosci Remote Sens Lett. 19:1–5. doi: 10.1109/LGRS.2020.3024006.
  • Niu Z, Zhong G, Yu H. 2021. A review on the attention mechanism of deep learning. Neurocomputing. 452:48–62. doi: 10.1016/j.neucom.2021.03.091.
  • Shah C, Du Q, Xu Y. 2022. Enhanced TabNet: attentive interpretable tabular learning for hyperspectral image classification. Remote Sens. 14(3):716. doi: 10.3390/rs14030716.
  • Shi H, Cao G, Ge Z, Zhang Y, Fu P. 2021. Double-branch network with pyramidal convolution and iterative attention for hyperspectral image classification. Remote Sens. 13(7):1403. doi: 10.3390/rs13071403.
  • Sun L, Zhao G, Zheng Y, Wu Z. 2022. Spectral–spatial feature tokenization transformer for hyperspectral image classification. IEEE Trans Geosci Remote Sens. 60:1–14. doi: 10.1109/TGRS.2022.3144158.
  • Szegedy C, Ioffe S, Vanhoucke V, Alemi A. 2017. Inception-v4, Inception-ResNet and the impact of residual connections on learning. AAAI. 31(1):4278–4284. doi: 10.1609/aaai.v31i1.11231.
  • Wang J, Huang R, Guo S, Li L, Zhu M, Yang S, Jiao L. 2021. NAS-guided lightweight multiscale attention fusion network for hyperspectral image classification. IEEE Trans Geosci Remote Sens. 59(10):8754–8767. doi: 10.1109/TGRS.2021.3049377.
  • Wang Q, Wu B, Zhu P, Li P, Zuo W, Hu Q. 2020. ECA-Net: efficient channel attention for deep convolutional neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); June 2020. p. 11531–11539. doi: 10.1109/CVPR42600.2020.01155.
  • Wieme J, Mollazade K, Malounas I, Zude-Sasse M, Zhao M, Gowen A, Argyropoulos D, Fountas S, Van Beek J. 2022. Application of hyperspectral imaging systems and artificial intelligence for quality assessment of fruit, vegetables and mushrooms: a review. Biosyst Eng. 222:156–176. doi: 10.1016/j.biosystemseng.2022.07.013.
  • Xu Y, Zhang L, Du B, Zhang F. 2018. Spectral–spatial unified networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens. 56(10):1–17. doi: 10.1109/TGRS.2018.2827407.
  • Yang Y, Qu J, Xiao S, Dong W, Li Y, Du Q. 2022. A deep multiscale pyramid network enhanced with spatial–spectral residual attention for hyperspectral image change detection. IEEE Trans Geosci Remote Sens. 60:1–13. doi: 10.1109/TGRS.2022.3161386.
  • Yu C, Han R, Song M, Liu C, Chang C-I. 2020. A simplified 2D-3D CNN architecture for hyperspectral image classification based on spatial–spectral fusion. IEEE J Sel Top Appl Earth Observ Remote Sens. 13:2485–2501. doi: 10.1109/JSTARS.2020.2983224.
  • Zhang H, Hu W, Wang X. 2022. ParC-Net: position aware circular convolution with merits from ConvNets and transformer. Computer Vision-ECCV 2022; Oct 2022. p. 613–630. doi: 10.1007/978-3-031-19809-0_35.
  • Zhang T, Shi C, Liao D, Wang L. 2021. A spectral spatial attention fusion with deformable convolutional residual network for hyperspectral image classification. Remote Sens. 13(18):3590. doi: 10.3390/rs13183590.
  • Zhao C, Zhu W, Feng S. 2022. Hyperspectral image classification based on kernel-guided deformable convolution and double-window joint bilateral filter. IEEE Geosci Remote Sens Lett. 19:1–5. doi: 10.1109/LGRS.2021.3084203.
  • Zhong Z, Li J, Luo Z, Chapman M. 2018. Spectral–spatial residual network for hyperspectral image classification: a 3-D deep learning framework. IEEE Trans Geosci Remote Sens. 56(2):847–858. doi: 10.1109/TGRS.2017.2755542.
  • Zhou W, Kamata S, Luo Z, Wang H. 2022. Multiscanning strategy-based recurrent neural network for hyperspectral image classification. IEEE Trans Geosci Remote Sens. 60:1–18. doi: 10.1109/TGRS.2021.3138742.