521
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simulation of visible light at night from infrared measurements using deep learning technique

, , &
Article: 2227610 | Received 13 Apr 2023, Accepted 15 Jun 2023, Published online: 05 Jul 2023

References

  • Cheng W, Li Q, Wang Z, Zhang W, Huang F. 2022. Creating synthetic night-time visible-light meteorological satellite images using the GAN method. Remote Sens Lett. 13(7):738–745. doi:10.1080/2150704X.2022.2079016.
  • Harder P, Jones W, Lguensat R, Bouabid S, Fulton J, Quesada-Chacón D, Marcolongo A, Stefanovi S, Rao Y, Manshausen P, Watson-Parris D. 2020. NightVision: generating nighttime satellite imagery from infra-Red observations. Paper presented at: Virtual-only Conference. Tackling Climate Change with Machine Learning workshop at NeurIPS 2020; Dec 8. https://arxiv.org/abs/2011.07017
  • Heidinger A, Straka WC. 2010. Algorithm theoretical basis document for ABI Cloud Mask. Maryland: NOAA NESDIS Center for Satellite Applications and Research; 1–86. https://www.star.nesdis.noaa.gov/star/contact.php
  • Kim K, Kim JH, Moon YJ, Park E, Shin G, Kim T, Kim Y, Hong S. 2019. Nighttime reflectance generation in the visible band of satellites. Remote Sens. 11(18):2087. doi:10.3390/rs11182087.
  • Krebs W, Mannstein H, Bugliaro L, Mayer B. 2007. A new day- and night-time meteosat second generation cirrus detection algorithm MeCidA. Atmos Chem Phys. 7(24):6145–6159. doi:10.5194/acp-7-6145-2007.
  • Levy RC, Remer LA, Tanré́ D, Mattoo S, Kaufman YJ. 2009. Algorithm for remote sensing of tropospheric aerosol over dark targets from MODIS: Collections 005 and 051: revision 2. MODIS Algorithm Theoretical Basis Document. 1–96.
  • Li J, Menzel WP, Schmit TJ, Schmetz J. 2022. Applications of geostationary hyperspectral infrared sounder observations: progress, challenges, and future perspectives. Bull Am Meteorol Soc. 103(12):E2733–E2755. doi:10.1175/BAMS-D-21-0328.1.
  • Lu W, Qiu Y, Yang L, Huang Y. 2022. Analysis of the ranging systematic error of the FY-4 geostationary satellite and its influence on orbit determination. Chin J Sci Instrum. 43(2):73–83.
  • Ma H, L Y, Wu X, Ran Y, Yan J. 2022. Automatic detection of night land fog based on H8/AHI satellite data. Remote Sens Technol Appl. 37(2):408–415.
  • Min M, Wu C, Li C, Liu H, Xu N, Wu X, Chen L, Wang F, Sun F, Qin D, et al. 2017. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: fengyun-4 series. J Meteorol Res. 31(4):708–719. doi:10.1007/s13351-017-6161-z.
  • Pavolonis M. 2010. GOES-R Advanced Baseline Imager (ABI) algorithm theoretical basis document for cloud type and cloud phase. Maryland: NOAA NESDIS Center for Satellite Applications and Research; 1–86. https://www.star.nesdis.noaa.gov/star/contact.php
  • Qu J, Yan J, Wang Y. 2019. Global clear-sky data synthesis technology based on FY-3D MERSI-II instrument. Meteorol Sci Technol. 47(4):539–545.
  • Xie L, Wu S, Wu R, Chen J, Xu Z, Cao L. 2023. Cross-comparison of radiation response characteristics between the FY-4B/AGRI and GK-2A/AMI in China. Remote Sens. 15(3):779. doi:10.3390/rs15030779.
  • Yang J, Zhang Z, Wei C, Lu F, Guo Q. 2017. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull Am Meteorol Soc. 98(8):1637–1658. doi:10.1175/BAMS-D-16-0065.1.
  • Zhang P, Guo Q, Chen B, Feng X. 2016. The Chinese next-generation geostationary meteorological satellite FY-4 compared with the Japanese Himawari-8/9 Satellites. Adv Meteorol Sci Technol. 6(1):72–75.
  • Zhu Z, Shi C, Gu J. 2023. Characterization of bias in Fengyun-4B/AGRI infrared observations using RTTOV. Remote Sens. 15(5):1224. doi:10.3390/rs15051224.