1,227
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Drivers of maize yield variability at household level in Northern Ghana and Malawi

&
Article: 2230948 | Received 09 Mar 2023, Accepted 23 Jun 2023, Published online: 03 Jul 2023

References

  • Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC. 2018. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci Data. 5(1):1–12. doi: 10.1038/sdata.2017.191.
  • Addai KN, Owusu V. 2014. Technical efficiency of maize farmers across various agro ecological zones of Ghana. J Agric Environ Sci. 3(1):2334–2412.
  • Adu GB, Badu-Apraku B, Akromah R, Amegbor IK, Adogoba DS, Haruna A, Manigben KA, Aboyadana PA, Wiredu AN. 2021. Trait profile of maize varieties preferred by farmers and value chain actors in northern Ghana. Agron Sustain Dev. 41(4):50. doi: 10.1007/s13593-021-00708-w.
  • Adu GB, Badu-Apraku B, Akromah R, Awuku FJ. 2022. Combining abilities and heterotic patterns among early maturing maize inbred lines under optimal and striga-infested environments. Genes. 13(12):2289. doi: 10.3390/GENES13122289/S1.
  • Agboyi LK, Goergen G, Beseh P, Mensah SA, Clottey VA, Glikpo R, Buddie A, Cafà G, Offord L, Day R, et al. 2020. Parasitoid complex of fall armyworm, Spodoptera frugiperda, in Ghana and Benin. Insects. 11(2):68. doi: 10.3390/insects11020068.
  • Ahmad I, Saeed U, Fahad M, Ullah A, Habib Ur Rahman M, Ahmad A, Judge J. 2018. Yield forecasting of spring maize using remote sensing and crop modeling in Faisalabad-Punjab Pakistan. J Indian Soc Remote Sens. 46(10):1701–1711. doi: 10.1007/S12524-018-0825-8/METRICS.
  • Akinnifesi FK, Makumba W, Kwesiga FR. 2006. Sustainable maize production using gliricidia/maize intercropping in southern Malawi. Ex Agric. 42(4):441–457. doi: 10.1017/S0014479706003814.
  • Andam K, Johnson M, Ragasa C, Kufoalor D, Das Gupta S. 2017. A Chicken and Maize Situation: the Poultry Feed Sector in Ghana, AgriSciRN: Agribusiness (Topic).
  • Andani A, Moro A-HB, Issahaku G. 2020. Fertilizer subsidy policy and smallholder farmers’ crop productivity: the case of maize production in North-Eastern Ghana. J Agric Extens Rural Dev. 12(2):18–25. doi: 10.5897/JAERD2020.1138.
  • Asante BO, Temoso O, Addai KN, Villano RA. 2019. Evaluating productivity gaps in maize production across different agroecological zones in Ghana. Agric Syst. 176:102650. 102650. doi: 10.1016/j.agsy.2019.102650.
  • Benin S, Johnson M, Abokyi E, Ahorbo G, Jimah K, Nasser G, Owusu V, Taabazuing J, Tenga A. 2013. Revisiting agricultural input and farm support subsidies in Africa: the case of Ghana’s mechanization, fertilizer, block farms, and marketing programs. SSRN J. doi: 10.2139/ssrn.2373185.
  • Braimoh AK, Vlek PLG. 2006. Soil quality and other factors influencing maize yield in northern Ghana. Soil Use Manage. 22(2):165–171. doi: 10.1111/j.1475-2743.2006.00032.x.
  • Buah SSJ, Ibrahim H, Derigubah M, Kuzie M, Segtaa JV, Bayala J, Zougmore R, Ouedraogo M.,. 2017. Tillage and fertilizer effect on maize and soybean yields in the Guinea savanna zone of Ghana. Agric Food Secur. 6(1):1–11. doi: 10.1186/S40066-017-0094-8/TABLES/5.
  • Burke M, Lobell DB. 2017. Satellite-based assessment of yield variation and its determinants in smallholder African systems. Proc Natl Acad Sci U S A. 114(9):2189–2194. doi: 10.1073/PNAS.1616919114/SUPPL_FILE/PNAS.201616919SI.PDF.
  • Burke WJ, Jayne TS. 2021. Disparate access to quality land and fertilizers explain Malawi’s gender yield gap. Food Policy. 100:102002. doi: 10.1016/j.foodpol.2020.102002.
  • Burke WJ, Jayne TS, Snapp SS. 2022. Nitrogen efficiency by soil quality and management regimes on Malawi farms: can fertilizer use remain profitable? World Dev. 152:105792. doi: 10.1016/j.worlddev.2021.105792.
  • Burke WJ, Snapp SS, Jayne TS. 2020. An in-depth examination of maize yield response to fertilizer in Central Malawi reveals low profits and too many weeds. Agric Econ. 51(6):923–940. doi: 10.1111/agec.12601.
  • Cai Y, Guan K, Lobell D, Potgieter AB, Wang S, Peng J, Xu T, Asseng S, Zhang Y, You L, et al. 2019. Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches. Agric For Meteorol. 274:144–159. doi: 10.1016/j.agrformet.2019.03.010.
  • Cairns JE, Chamberlin J, Rutsaert P, Voss RC, Ndhlela T, Magorokosho C.,. 2021. Challenges for sustainable maize production of smallholder farmers in sub-Saharan Africa. J Cereal Sci. 101:103274. doi: 10.1016/j.jcs.2021.103274.
  • Cassim L, Pemba LA. 2022. The interactive effects of farm input subsidy program and agricultural extension eervices on smallholder maize production and Technical Efficiency in Malawi. Malawi J Econ. 2(1):66–84. Available at: https://www.ajol.info/index.php/mje/article/view/228064. (Accessed: 8 March 2023).
  • Cattaneo A, Nelson A, McMenomy T. 2021. Global mapping of urban-rural catchment areas reveals unequal access to services. Proc Natl Acad Sci USA. 118(2):e2011990118. doi: 10.1073/PNAS.2011990118/SUPPL_FILE/PNAS.2011990118.SD01.XLSX.
  • Charoen-Ung P, Mittrapiyanuruk P. 2019. Sugarcane yield grade prediction using random forest with forward feature selection and hyper-parameter tuning. Adv Intell Syst Comput. 769:33–42. doi: 10.1007/978-3-319-93692-5_4/COVER.
  • Chibwana C, et al. 2014. Measuring the impacts of Malawi’s farm input subsidy programme. Afr J Agric Resour Econ. 9(2):132–147. doi: 10.22004/AG.ECON.176511.
  • Danquah EO, et al. 2020. Monitoring and modelling analysis of maize of maize (Zea mays L) yield gap in smallholder farming in Ghana. Agriculture. 10(9):420. doi: 10.3390/AGRICULTURE10090420.
  • Delerce S, Dorado H, Grillon A, Rebolledo MC, Prager SD, Patiño VH, Garcés Varón G, Jiménez D. 2016. Assessing weather-yield relationships in rice at local scale using data mining approaches. PLoS One. 11(8):e0161620. doi: 10.1371/JOURNAL.PONE.0161620.
  • Didan K. 2015. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN Grid V006 [Dataset]. NASA EOSDIS Land Processes DAAC. accessed 2023-02-22 from doi: 10.5067/MODIS/MOD13Q1.006.
  • Everingham Y, Sexton J, Skocaj D, Inman-Bamber G. 2016. Accurate prediction of sugarcane yield using a random forest algorithm. Agron Sustain Dev. 36(2):1–9. doi: 10.1007/S13593-016-0364-Z/FIGURES/3.
  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, et al. 2007. The shuttle radar topography mission. Rev Geophys. 45(2):2004. doi: 10.1029/2005RG000183.
  • Fearon J, Adraki PK, Boateng VF. 2015. ‘Fertilizer subsidy programme in Ghana: evidence of performance after six years of implementation’. 5(21). Available at: www.iiste.org. (Accessed: 8 March 2023).
  • Fosu-Mensah BY, Manchadi A, Vlek PLG. 2019. Impacts of climate change and climate variability on maize yield under rainfed conditions in the sub-humid zone of Ghana: a scenario analysis using APSIM. West Afr J Appl Ecol. 27(1):108–126. doi: 10.4314/wajae.v27i1.
  • Genuer, R, Jean-Michel, P, Christine, TM,Variable selection using random forests (VSURF), CRAN Repos, 2022
  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R.,. 2017. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ. 202:18–27. doi: 10.1016/j.rse.2017.06.031.
  • Greenwell B. 2022. Package ’pdp’- Partial Dependence Plots. Available at: https://cran.r-project.org/web/packages/pdp/pdp.pdf. (Accessed: 10 February 2023).
  • Hengl T, Miller MAE, Križan J, Shepherd KD, Sila A, Kilibarda M, Antonijević O, Glušica L, Dobermann A, Haefele SM, et al. 2021. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci Rep. 11(1):1–18. doi: 10.1038/s41598-021-85639-y.
  • Jeong JH, Resop JP, Mueller ND, Fleisher DH, Yun K, Butler EE, Timlin DJ, Shim K-M, Gerber JS, Reddy VR, et al. 2016. Random forests for global and regional crop yield predictions. PLoS One. 11(6):e0156571. doi: 10.1371/JOURNAL.PONE.0156571.
  • Jin Z, Azzari G, Burke M, Aston S, Lobell D.,. 2017. Mapping smallholder yield heterogeneity at multiple scales in Eastern Africa. Remote Sens. 9(9):931. doi: 10.3390/rs9090931.
  • Kabambe VH, Katunga LA, Kapewa T. 2008. Screening legumes for integrated management of witchweeds (Alectra vogelii and Striga asiatica) in Malawi. Afr J Agric Res. 3:708–715.
  • Kanton RAL, Prasad PVV, Mohammed AM, Bidzakin JK, Ansoba EY, Asungre PA, Lamini S, Mahama G, Kusi F, Sugri I, et al. 2016. Organic and inorganic fertilizer effects on the growth and yield of maize in a dry agro-ecology in Northern Ghana. J Crop Improve. 30(1):1–16. doi: 10.1080/15427528.2015.1085939.
  • Khun M. 2022. Classification and regression training: package caret. Available at: https://cran.r-project.org/web/packages/caret/caret.pdf. (Accessed: 26 January 2023).
  • Lambert M-J, Traoré PCS, Blaes X, Baret P, Defourny P. 2018. Estimating smallholder crops production at village level from Sentinel-2 time series in Mali’s cotton belt. Remote Sens Environ. 216:647–657. doi: 10.1016/j.rse.2018.06.036.
  • Li C, Chimimba EG, Kambombe O, Brown LA, Chibarabada TP, Lu Y, Anghileri D, Ngongondo C, Sheffield J, Dash J, et al. 2022. Maize yield estimation in intercropped smallholder fields using satellite data in Southern Malawi. Remote Sens. 14(10):2458. doi: 10.3390/rs14102458.
  • Liu L, Basso B. 2017. Spatial evaluation of maize yield in Malawi. Agric Syst. 157:185–192. doi: 10.1016/j.agsy.2017.07.014.
  • Lobell DB, Azzari G, Burke M, Gourlay S, Jin Z, Kilic T, Murray S. 2020. Eyes in the sky, boots on the ground: assessing satellite- and ground-based approaches to crop yield measurement and analysis. Am J Agric Econ. 102(1):202–219. doi: 10.1093/ajae/aaz051.
  • Lohitha Reddy K, Siva Kumar AP. 2023. Machine learning techniques for weather based crop yield prediction. 2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS). pp. 1263–1268. doi: 10.1109/ICAIS56108.2023.10073740.
  • Mapila MATJ, Njuki J, Delve RJ, Zingore S, Matibini J. 2012. Determinants of fertiliser use by smallholder maize farmers in the Chinyanja Triangle in Malawi, Mozambique and Zambia. Agric Econ Res Policy Pract Southern Afr. 51(1):21–41. doi: 10.1080/03031853.2012.649534.
  • Marfo-Ahenkora E. 2020. Strategies for sustainable productivity of maize (Zea mays L.) - based farming systems of smallholder farmers in Ghana. University of Cape Coast. Available at: http://ir.ucc.edu.gh/jspui/handle/123456789/7197. (Accessed: 28 February 2023).
  • Martey E, Etwire PM, Wossen T, Menkir A, Abdoulaye T. 2022. Impact assessment of Striga resistant maize varieties and fertilizer use in Ghana: a panel analysis. Food Energy Secur. 12(2):e432. doi: 10.1002/fes3.432.
  • McCarthy N, Kilic T, Brubaker J, Murray S, de la Fuente A. 2021. Droughts and floods in Malawi: impacts on crop production and the performance of sustainable land management practices under weather extremes. Environ Dev Econ. 26(5-6):432–449. doi: 10.1017/S1355770X20000455.
  • Meng L, Liu H, Ustin SL, Zhang X. 2021. Predicting maize yield at the plot scale of different fertilizer systems by multi-source data and machine learning methods. Remote Sens. 13(18):3760. doi: 10.3390/rs13183760.
  • Meyer H, Reudenbach C, Hengl T, Katurji M, Nauss T. 2018. Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environ Model Softw. 101:1–9. doi: 10.1016/j.envsoft.2017.12.001.
  • Meyer H, Reudenbach C, Wöllauer S, Nauss T. 2019. Importance of spatial predictor variable selection in machine learning applications – moving from data reproduction to spatial prediction. Ecol Modell. 411:108815. doi: 10.1016/j.ecolmodel.2019.108815.
  • Meyer H, Pebesma E. 2021. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol Evol. 12(9):1620–1633. doi: 10.1111/2041-210X.13650.
  • Msowoya K, Madani K, Davtalab R, Mirchi A, Lund JR. 2016. Climate change impacts on maize production in the warm heart of Africa. Water Resour Manage. 30(14):5299–5312. doi: 10.1007/S11269-016-1487-3/FIGURES/8.
  • Muthoni F. 2021. Machine learning model accurately predict maize grain yields in conservation agriculture systems in Southern Africa. 2021 9th International Conference on Agro-Geoinformatics, Agro-Geoinformatics 2021. doi: 10.1109/AGRO-GEOINFORMATICS50104.2021.9530335.
  • Nagoshi RN, Koffi D, Agboka K, Adjevi AKM, Meagher RL, Goergen G.,. 2021. The fall armyworm strain associated with most rice, millet, and pasture infestations in the Western Hemisphere is rare or absent in Ghana and Togo. PLoS One. 16(6):e0253528. doi: 10.1371/JOURNAL.PONE.0253528.
  • Ngcamu BS, Chari F. 2020. Drought influences on food insecurity in Africa: a systematic literature review. IJERPH. 17(16):5897. doi: 10.3390/ijerph17165897.
  • Niassy S, Agbodzavu MK, Mudereri BT, Kamalongo D, Ligowe I, Hailu G, Kimathi E, Jere Z, Ochatum N, Pittchar J, et al. 2022. Performance of push-pull technology in low-fertility soils under conventional and conservation agriculture farming systems in Malawi. Sustainability. 14(4):2162. doi: 10.3390/su14042162.
  • Oluoch KO, De Groote H, Gitonga ZM, Jin Z, Davis KF. 2022. A suite of agronomic factors can offset the effects of climate variability on rainfed maize production in Kenya. Sci Rep. 12(1):1–8. doi: 10.1038/s41598-022-19286-2.
  • Parkes B, Sultan B, Ciais P. 2018. The impact of future climate change and potential adaptation methods on Maize yields in West Africa. Clim Change. 151(2):205–217. doi: 10.1007/S10584-018-2290-3/METRICS.
  • R Core, Team,R: A language and environment for statistical computing [Internet], 2020, http://www.r-project.org/index.html (Accessed: 21 August 2020).
  • Ragasa C, Chapoto A. 2017. Moving in the right direction? The role of price subsidies in fertilizer use and maize productivity in Ghana. Food Sec. 9(2):329–353. doi: 10.1007/S12571-017-0661-7/METRICS.
  • Sauer J, Tchale H. 2009. The economics of soil fertility management in Malawi. Appl Econ Perspect Policy. 31(3):535–560. doi: 10.1111/j.1467-9353.2009.01452.x.
  • Scheiterle L, Häring V, Birner R, Bosch C. 2019. Soil, striga, or subsidies? Determinants of maize productivity in Northern Ghana. Agric Econ. 50(4):479–494. doi: 10.1111/agec.12504.
  • Scheiterle L, Birner R. 2018. Assessment of Ghana’s comparative ddvantage in maize production and the role of fertilizers. Sustainability. 10(11):4181. doi: 10.3390/su10114181.
  • Setsoafia ED, Ma W, Renwick A. 2022. Effects of sustainable agricultural practices on farm income and food security in Northern Ghana. Agric Econ. 10(1):1–15. doi: 10.1186/S40100-022-00216-9/TABLES/4.
  • Shi W, Tao F. 2014. Vulnerability of African maize yield to climate change and variability during 1961-2010. Food Sec. 6(4):471–481. doi: 10.1007/S12571-014-0370-4/METRICS.
  • Silberg TR, Richardson RB, Hockett M, Snapp SS. 2017. Sustainability maize-legume intercropping in central Malawi: determinants of practice. Int J Agric. 15(6):662–680. doi: 10.1080/14735903.2017.1375070.
  • Snapp S, et al. 2014. Maize yield response to nitrogen in Malawi’s smallholder production systems, MaSSP. 9. Washington, DC. Available at: http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/128436. (Accessed: 20 February 2023).
  • Srivastava AK, Mboh CM, Gaiser T, Ewert F. 2017. Impact of climatic variables on the spatial and temporal variability of crop yield and biomass gap in Sub-Saharan Africa- a case study in Central Ghana. Field Crops Research. 203:33–46. doi: 10.1016/j.fcr.2016.11.010.
  • Tamene L, Mponela P, Ndengu G, Kihara J. 2016. Assessment of maize yield gap and major determinant factors between smallholder farmers in the Dedza district of Malawi. Nutr Cycl Agroecosyst. 105(3):291–308. doi: 10.1007/s10705-015-9692-7.
  • Tinonin C, et al. 2016. Africa RISING Baseline Evaluation Survey (ARBES) report for Ghana. International Food Policy Research Institute. Available at: https://cgspace.cgiar.org/handle/10568/75528. (Accessed: 8 March 2023).
  • Tittonell P, Giller KE. 2013. When yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agriculture. Field Crops Res. 143:76–90. doi: 10.1016/j.fcr.2012.10.007.
  • Vergopolan N, Xiong S, Estes L, Wanders N, Chaney NW, Wood EF, Konar M, Caylor K, Beck HE, Gatti N, et al. 2021. Field-scale soil moisture bridges the spatial-scale gap between drought monitoring and agricultural yields. Hydrol Earth Syst Sci. 25(4):1827–1847. doi: 10.5194/hess-25-1827-2021.
  • Vuntade D, Mzuza MK, Vuntade D, Mzuza MK. 2022. Factors affecting adoption of Conservation Agriculture practices in Mpatsa extension planning area, Nsanje, Southern Malawi. GEP. 10(03):96–110. doi: 10.4236/gep.2022.103008.
  • Wang H, Snapp SS, Fisher M, Viens F. 2019. A Bayesian analysis of longitudinal farm surveys in Central Malawi reveals yield determinants and site-specific management strategies. PLoS One. 14(8):e0219296. doi: 10.1371/journal.pone.0219296.
  • Warnatzsch EA, Reay DS, Camardo Leggieri M, Battilani P. 2020. Climate change impact on aflatoxin contamination risk in Malawi’s maize crops. Front Sustain Food Syst. 4:238. doi: 10.3389/FSUFS.2020.591792/BIBTEX.
  • Warnatzsch EA, Reay DS. 2020. Assessing climate change projections and impacts on Central Malawi’s maize yield: the risk of maladaptation. Sci Total Environ. 711:134845. doi: 10.1016/j.scitotenv.2019.134845.
  • De Weerdt J, Duchoslav J. 2022. Are fertilizer subsidies in Malawi value for money? doi: 10.2499/P15738COLL2.135960.
  • White S. 2019. A TEEBAgriFood analysis of the Malawi maize agri-food system. Available at: https://futureoffood.org/wp-content/uploads/2021/01/GA_TEEB_MalawiMaize201903.pdf. (Accessed: 20 February 2023).
  • Yeboah S, Ennin SA, Ibrahim A, Oteng-Darko P, Mutyambai D, Khan ZR, Mochiah MB, Ekesi S, Niassy S. 2021. Effect of spatial arrangement of push-pull companion plants on fall armyworm control and agronomic performance of two maize varieties in Ghana. Crop Prot. 145:105612. doi: 10.1016/j.cropro.2021.105612.
  • Zhang L, Zhang Z, Luo Y, Cao J, Tao F. 2019. Combining optical, fluorescence, thermal satellite, and environmental data to predict county-level maize yield in China using machine learning approaches. Remote Sens. 12(1):21. doi: 10.3390/rs12010021.