671
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mapping bedrock with vegetation spectral features using time series Sentinel-2 images

, &
Article: 2236574 | Received 03 Apr 2023, Accepted 10 Jul 2023, Published online: 19 Jul 2023

References

  • Adiri Z, Lhissou R, El Harti A, Jellouli A, Chakouri M. 2020. Recent advances in the use of public domain satellite imagery for mineral exploration: a review of Landsat-8 and Sentinel-2 applications. Ore Geol Rev. 117:103332. doi: 10.1016/j.oregeorev.2020.103332.
  • Bachri I, Hakdaoui M, Raji M, Teodoro AC, Benbouziane A. 2019. Machine learning algorithms for automatic lithological mapping using remote sensing data: a case study from Souk Arbaa Sahel, Sidi Ifni Inlier, Western Anti-Atlas, Morocco. IJGI. 8(6):248. doi: 10.3390/ijgi8060248.
  • Bai Y, He Q, Liu Z, Wu Z, Xie S. 2021. Soil nutrient variation impacted by ecological restoration in the different lithological Karst Area, Shibing, China. Glob Ecol Conserv. 25:e01399. doi: 10.1016/j.gecco.2020.e01399.
  • Black M, Riley TR, Ferrier G, Fleming AH, Fretwell PT. 2016. Automated lithological mapping using airborne hyperspectral thermal infrared data: a case study from Anchorage Island, Antarctica. Remote Sens Environ. 176:225–241. doi: 10.1016/j.rse.2016.01.022.
  • Bradbury DE. 1944. Vegetation as an indicator of rock types in the Northern Swisshelm Mountains, Southeastern Arizona. Arizona: The University of Arizona.
  • Breiman LEO. 2001. Random forests. Mach Learn. 45(1):5–32. doi: 10.1023/A:1010933404324.
  • Broge NH, Leblanc E. 2001. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens Environ. 76(2):156–172. doi: 10.1016/S0034-4257(00)00197-8.
  • Cabello J, Alcaraz-Segura D, Ferrero R, Castro AJ, Liras E. 2012. The role of vegetation and lithology in the spatial and inter-annual response of EVI to climate in drylands of Southeastern Spain. J Arid Environ. 79(April):76–83. doi: 10.1016/j.jaridenv.2011.12.006.
  • Chuman T, Gürtlerová P, Hruška J, Adamová M. 2014. Geochemical reactivity of rocks of the Czech Republic. J Maps. 10(2):341–349. doi: 10.1080/17445647.2013.867418.
  • Crippen RE, Blom RG. 2001. Unveiling the lithology of vegetated terrains in remotely sensed imagery. Photogramm Eng Remote Sens. 67(8):935–943.
  • Crist EP, Cicone RC. 1984. A physically-based transformation of thematic mapper data-the TM Tasseled Cap. IEEE Trans Geosci Remote Sens. GE-22(3):256–263. doi: 10.1109/TGRS.1984.350619.
  • Demattê JA, Sayão VM, Rizzo R, Fongaro CT. 2017. Soil class and attribute dynamics and their relationship with natural vegetation based on satellite remote sensing. Geoderma. 302(May):39–51. doi: 10.1016/j.geoderma.2017.04.019.
  • Ding Y, Li Z, Peng S. 2020. Global analysis of time-lag and -accumulation effects of climate on vegetation growth. Int J Appl Earth Observ Geoinf. 92(June):102179. doi: 10.1016/j.jag.2020.102179.
  • Dymond CC, Mladenoff DJ, Radeloff VC. 2002. Phenological differences in tasseled cap indices improve deciduous forest classification. Remote Sens Environ. 80(3):460–472. doi: 10.1016/S0034-4257(01)00324-8.
  • Eagleson PS. 1982. Ecological optimality in water-limited natural soil-vegetation systems 1. Theory and hypothesis. Water Resour Res. 18(2):325–340. doi: 10.1029/WR018i002p00325.
  • Erinjery JJ, Singh M, Kent R. 2018. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens Environ. 216(October):345–354. doi: 10.1016/j.rse.2018.07.006.
  • ESA. 2015. SENTINEL-2 User Handbook. doi: 10.13128/REA-22658.
  • Fathololoumi S, Vaezi AR, Kazem Alavipanah S, Ghorbani A, Saurette D, Biswas A. 2020. Improved digital soil mapping with multitemporal remotely sensed satellite data fusion: a case study in Iran. Sci Total Environ. 721:137703. doi: 10.1016/j.scitotenv.2020.137703.
  • Feng J, Rivard B, Rogge D, Sánchez-Azofeifa A. 2013. The longwave infrared (3-14μm) spectral properties of rock encrusting lichens based on laboratory spectra and airborne SEBASS imagery. Remote Sens Environ. 131:173–181. doi: 10.1016/j.rse.2012.12.018.
  • Frampton WJ, Dash J, Watmough G, Milton EJ. 2013. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J Photogramm Remote Sens. 82(August):83–92. doi: 10.1016/j.isprsjprs.2013.04.007.
  • Fraser SJ, Green AA. 1987. A software defoliant for geological analysis of band ratios. Int J Remote Sens. 8(3):525–532. doi: 10.1080/01431168708948659.
  • Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A, et al. 2015. The climate hazards infrared precipitation with stations - a new environmental record for monitoring extremes. Sci Data. 2:150066. doi: 10.1038/sdata.2015.66.
  • Gao B-C. 1996. NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ. 58(3):257–266. doi: 10.1016/S0034-4257(96)00067-3.
  • Ghosh T, Hazra S, Kumar Das A. 2022. Potential of ALOS-2 PALSAR-2 stripmap data for lithofacies identification and geological lineament mapping in vegetated fold-thrust belt of Nagaland, India. Adv Space Res. 69(4):1840–1862. doi: 10.1016/j.asr.2021.09.007.
  • Gómez C, White JC, Wulder MA. 2011. Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation. Remote Sens Environ. 115(7):1665–1679. doi: 10.1016/j.rse.2011.02.025.
  • Grebby S, Cunningham D, Naden J, Tansey K. 2010. Lithological mapping of the Troodos ophiolite, Cyprus, using airborne LiDAR topographic data. Remote Sens Environ. 114(4):713–724. Elsevier doi: 10.1016/j.rse.2009.11.006.
  • Grebby S, Cunningham D, Tansey K, Naden J. 2014. The impact of vegetation on lithological mapping using airborne multispectral data: a case study for the north Troodos Region, Cyprus. Remote Sens. 6(11):10860–10887. doi: 10.3390/rs61110860.
  • Grebby S, Field E, Tansey K, Yu B, Galvao LS, Thenkabail PS. 2016. Evaluating the use of an object-based approach to lithological mapping in vegetated terrain. Remote Sens. 8(10):843. doi: 10.3390/RS8100843.
  • Grebby S, Naden J, Cunningham D, Tansey K. 2011. Integrating airborne multispectral imagery and airborne LiDAR data for enhanced lithological mapping in vegetated terrain. Remote Sens Environ. 115(1):214–226. Elsevier doi: 10.1016/j.rse.2010.08.019.
  • Han T, Wulder MA, White JC, Coops NC, Alvarez MF, Butson C. 2007. An efficient protocol to process Landsat images for change detection with tasselled cap transformation. IEEE Geosci Remote Sens Lett. 4(1):147–151. doi: 10.1109/LGRS.2006.887066.
  • Harris JR, Rogge D, Hitchcock R, Ijewliw O, Wright D. 2005. Mapping lithology in Canada ‘ s Arctic: Application of hyperspectral data using the minimum noise fraction transformation and matched filtering. Can J Earth Sci. 42(12):2173–2193. doi: 10.1139/e05-064.
  • Hejda M, Čuda J, Pyšková K, Zambatis G, Foxcroft LC, MacFadyen S, Storch D, Tropek R, Pyšek P. 2022. Water availability, bedrock, disturbance by herbivores, and climate determine plant diversity in South-African Savanna. Sci Rep. 12(1):338. doi: 10.1038/s41598-021-02870-3.
  • Hubová P, Tejnecký V, Češková M, Borůvka L, Němeček K, Drábek O. 2018. Behaviour of aluminium in forest soils with different lithology and herb vegetation cover. J Inorg Biochem. 181:139–144. doi: 10.1016/j.jinorgbio.2017.09.017.
  • Jiang Z, Liu H, Wang H, Peng J, Meersmans J, Green SM, Quine TA, Wu X, Song Z. 2020. Bedrock geochemistry influences vegetation growth by regulating the regolith water holding capacity. Nat Commun. 11(1):2392. doi: 10.1038/s41467-020-16156-1.
  • Jones JM, Guinel FC, Antunes PM. 2020. Carbonatites as rock fertilizers: a review. Rhizosphere. 13:100188. doi: 10.1016/j.rhisph.2020.100188.
  • Joswig JS, Wirth C, Schuman MC, Kattge J, Reu B, Wright IJ, Sippel SD, Rüger N, Richter R, Schaepman ME, et al. 2022. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat Ecol Evol. 6(1):36–50. doi: 10.1038/s41559-021-01616-8.
  • Karthikeyan L, Chawla I, Mishra AK. 2020. A review of remote sensing applications in agriculture for food security: crop growth and yield, irrigation, and crop losses. J Hydrol. 586:124905. doi: 10.1016/j.jhydrol.2020.124905.
  • Kauth RJ, Thomas GS. 1976. The tasselled cap – A graphic description of the spectral-temporal development of agricultural crops as seen by landsat. In LARS Symposia, p. 159. Purdue University, West Lafayette, Indiana: IEEE.
  • Kulkarni A, Shetti R, Shigwan BK, Vijayan S, Datar MN. 2021. What determines vegetation on rock outcrops of the Western Ghats: the macro-environment or lithotype? Folia Geobot. 56(2–3):149–165. doi: 10.1007/s12224-021-09399-3.
  • Kumar L, Schmidt K, Dury S, Skidmore A. 2001. Imaging Spectrometry: basic Principles and Prospective Applications. p. 111–155. Dordrecht: Springer.
  • Kycko M, Zagajewski B, Kluczek M, Tardà A, Pineda L, Palà V, Corbera J. 2022. Sentinel-2 and AISA airborne hyperspectral images for mediterranean shrubland mapping in Catalonia. Remote Sens. 14(21):5531. doi: 10.3390/rs14215531.
  • Langford RL. 2015. Temporal merging of remote sensing data to enhance spectral regolith, lithological and alteration patterns for regional mineral exploration. Ore Geol Rev. 68:14–29. doi: 10.1016/j.oregeorev.2015.01.005.
  • Leone JD, Holbrook WS, Riebe CS, Chorover J, Ferré TP, Carr BJ, Callahan RP. 2020. Strong slope-aspect control of regolith thickness by bedrock foliation. Earth Surf Process Landforms. 45(12):2998–3010. doi: 10.1002/esp.4947.
  • Liu H, Dai J, Xu C, Peng J, Wu X, Wang H. 2021. Bedrock-associated belowground and aboveground interactions and their implications for vegetation restoration in the Karst critical zone of Subtropical Southwest China. Prog Phys Geogr. 45(1):7–19. doi: 10.1177/0309133320949865.
  • Liu L, Ji M, Buchroithner M. 2018. A case study of the forced invariance approach for soil salinity estimation in vegetation-covered terrain using airborne hyperspectral imagery. IJGI. 7(2):48. doi: 10.3390/ijgi7020048.
  • Macintyre P, van Niekerk A, Mucina L. 2020. Efficacy of multi-season Sentinel-2 imagery for compositional vegetation classification. Int J Appl Earth Observ Geoinf. 85:101980. doi: 10.1016/j.jag.2019.101980.
  • Mahanta P, Maiti S. 2018. Regional scale demarcation of alteration zone using ASTER imageries in South Purulia Shear Zone, East India: Implication for mineral exploration in vegetated regions. Ore Geol Rev. 102(August):846–861. doi: 10.1016/j.oregeorev.2018.07.028.
  • Mahmood TH, Hasan K, Akhter SH. 2019. Lithologic mapping of a forested montane Terrain from Landsat 5 TM image. Geocarto Int. 34(7):750–768. doi: 10.1080/10106049.2018.1434688.
  • Mahmoudabadi E, Karimi A, Haghnia GH, Sepehr A. 2017. Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the Rangelands of Northeastern Iran. Environ Monit Assess. 189(10):500. doi: 10.1007/s10661-017-6197-7.
  • Maimouni S, Daghor L, Oukassou M, Moutaki SE, Lhissou R. 2021. Evaluate the effect of topographic factors and lithology on forest cover distribution: a case study of the Moroccan high atlas. Environ Model Assess. 26(5):787–801. doi: 10.1007/s10666-021-09785-3.
  • Manap HS, San BT. 2022. Data integration for lithological mapping using machine learning algorithms. Earth Sci Inform. 15(3):1841–1859. doi: 10.1007/s12145-022-00826-3.
  • Martin MH, Coughtrey PJ. 1982. Biological monitoring of heavy metal pollution. Dordrecht: Springer.
  • McCormick EL, Dralle DN, Hahm WJ, Tune AK, Schmidt LM, Chadwick KD, Rempe DM. 2021. Widespread woody plant use of water stored in bedrock. Nature. 597(7875):225–229. S doi: 10.1038/s41586-021-03761-3.
  • Meer FVD, De Jong SM. 2000. Improving the results of spectral unmixing of landsat thematic mapper imagery by enhancing the orthogonality of end-members. Int J Remote Sens. 21(15):2781–2797. doi: 10.1080/01431160050121249.
  • Menze BH, Kelm BM, Masuch R, Himmelreich U, Bachert P, Petrich W, Hamprecht FA. 2009. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinf. 10:213. doi: 10.1186/1471-2105-10-213.
  • Mostafiz C, Chang NB. 2018. Tasseled cap transformation for assessing hurricane landfall impact on a coastal watershed. Int J Appl Earth Observ Geoinf. 73:736–745. doi: 10.1016/j.jag.2018.08.015.
  • Mwaniki MW, Matthias MS, Schellmann G. 2015. Application of remote sensing technologies to map the structural geology of Central Region of Kenya. IEEE J Sel Top Appl Earth Observ Remote Sens. 8(4):1855–1867. doi: 10.1109/JSTARS.2015.2395094.
  • Nicklas L, Walde J, Wipf S, Lamprecht A, Mallaun M, Rixen C, Steinbauer K, Theurillat J-P, Unterluggauer P, Vittoz P, et al. 2021. Climate change affects vegetation differently on siliceous and calcareous summits of the European alps. Front Ecol Evol. 9(April):1–15. doi: 10.3389/fevo.2021.642309.
  • Ott RF. 2020. How lithology impacts global topography, vegetation, and animal biodiversity: a global-scale analysis of mountainous regions. Geophys Res Lett. 47(20):e2020GL088649. doi: 10.1029/2020GL088649.
  • Paradella WR, Bignelli PA, Veneziani P, Pietsch RW, Toutin T. 1997. Airborne and spaceborne synthetic aperture radar (SAR) integration with Landsat TM and gamma ray spectrometry for geological mapping in a tropical rainforest environment, the Mineral Province, Brazil. Int J Remote Sens. 18(7):1483–1501. doi: 10.1080/014311697218232.
  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O. 2011. Scikit-Learn: machine learning in Python. J Mach Learn Res. 12:2825–2830. doi: 10.1289/EHP4713.
  • Pitt MD, Heady HF. 1978. Responses of annual vegetation to temperature and rainfall patterns in Northern California. Ecology. 59(2):336–350. doi: 10.2307/1936378.
  • Porder S, Ramachandran S. 2013. The phosphorus concentration of common rocks-a potential driver of ecosystem P status. Plant Soil. 367(1-2):41–55. doi: 10.1007/s11104-012-1490-2.
  • Qiao Y, Chen H, Jiang Y. 2020. Quantifying the impacts of lithology on vegetation restoration using a random forest model in a Karst Trough Valley, China. Ecol Eng. 156:105973. doi: 10.1016/j.ecoleng.2020.105973.
  • Ranson KJ, C ST, Daughtry LL, Biehl, ME, Bauer. 1985. Sun-view angle effects on reflectance factors of corn canopies. Remote Sens Environ. 18(2):147–161. doi: 10.1016/0034-4257(85)90045-8.
  • Robertson KM, Milliken RE, Li S. 2016. Estimating mineral abundances of clay and gypsum mixtures using radiative transfer models applied to visible-near infrared reflectance spectra. Icarus. 277(October):171–186. doi: 10.1016/j.icarus.2016.04.034.
  • Rodriguez-Gomez C, Kereszturi G, Reeves R, Rae A, Pullanagari R, Jeyakumar P, Procter J. 2021. Lithological mapping of Waiotapu geothermal field (New Zealand) using hyperspectral and thermal remote sensing and ground exploration techniques. Geothermics. 96(July):102195. doi: 10.1016/j.geothermics.2021.102195.
  • Rouse JW, Jr., Haas RH, Schell JA, Deering DW. 1974. Monitoring vegetation systems in the great plains with ERTS. Goddard Space Flight Center 3d ERTS-1 Symptoms, p. 309–317. Washington, D.C.: NASA. https://ntrs.nasa.gov/search.jsp?R=19740022614.
  • Shi T, Xu H. 2019. Derivation of tasseled cap transformation coefficients for Sentinel-2 MSI at-sensor reflectance data. IEEE J Sel Top Appl Earth Observ Remote Sens. 12(10):4038–4048. doi: 10.1109/JSTARS.2019.2938388.
  • Shirmard H, Farahbakhsh E, Müller RD, Chandra R. 2022. A review of machine learning in processing remote sensing data for mineral exploration. Remote Sens Environ. 268:112750. doi: 10.1016/j.rse.2021.112750.
  • Siegal BS, Goetz AFH. 1977. Effect of vegetation on rock and soil type discrimination. Photogramm Eng Remote Sens. 43(2):191–196.
  • Taylor P. 2014. Geobotanical and soil spectral investigation for rock discrimination in the ‘Caatinga’ environment (Brazil) based on multitemporal remote sensing data. Can J Remote Sens. 21(1):37–41. doi: 10.1080/07038992.1995.10874596.
  • Tran KH, Zhang HK, Mcmaine JT, Zhang X, Luo D. 2022. 10 m Crop type mapping using Sentinel-2 reflectance and 30 m cropland data layer product. Int J Appl Earth Observ Geoinf. 107:102692. doi: 10.1016/j.jag.2022.102692.
  • Tsui CC, Chen ZS, Hsieh CF. 2004. Relationships between soil properties and slope position in a lowland rain forest of Southern Taiwan. Geoderma. 123(1–2):131–142. doi: 10.1016/j.geoderma.2004.01.031.
  • Wang R, Lin J, Zhao B, Li L, Xiao Z, Pilz J. 2018. Integrated approach for lithological classification using ASTER imagery in a shallowly covered region-the Eastern Yanshan Mountain of China. IEEE J Sel Top Appl Earth Observ Remote Sens. 11(12):4791–4807. doi: 10.1109/JSTARS.2018.2879493.
  • Warner T, Levandowski D, Bell R, Cetin H. 1994. Rule-based geobotanical classification of topographic, aeromagnetic, and remotely sensed vegetation community data. Remote Sens Environ. 50(1):41–51. doi: 10.1016/0034-4257(94)90093-0.
  • Webb LJ. 1968. Environmental relationships of the structural types of Australian Rain forest vegetation. Ecol Soc Am Stable. 49(2):296–311. doi: 10.2307/1934459.
  • Wilson MJ. 2019. The importance of parent material in soil classification: a review in a historical context. Catena. 182(May):104131. doi: 10.1016/j.catena.2019.104131.
  • Yu L, Porwal A, Holden EJ, Dentith MC. 2011. Suppression of vegetation in multispectral remote sensing images. Int J Remote Sens. 32(22):7343–7357. doi: 10.1080/01431161.2010.523726.
  • Zhong F, Xu X, Li Z, Zeng X, Yi R, Luo W, Zhang Y, Xu C. 2022. Relationships between lithology, topography, soil, and vegetation, and their implications for Karst vegetation restoration. Catena. 209(P1):105831. doi: 10.1016/j.catena.2021.105831.
  • Zhu X, Liu H, Wu L, Liang B, Liu F, He W. 2021. Impact of bedrock geochemistry on vegetation productivity depends on climate dryness in the Guizhou Karst of China. Prog Phys Geogr. 45(1):20–32. doi: 10.1177/0309133320936085.
  • Zou X, Mõttus M. 2017. Sensitivity of common vegetation indices to the Canopy structure of field crops. Remote Sens. 9(10):994. doi: 10.3390/rs9100994.