1,362
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Global landslide susceptibility prediction based on the automated machine learning (AutoML) framework

, &
Article: 2236576 | Received 14 Apr 2023, Accepted 10 Jul 2023, Published online: 31 Jul 2023

References

  • Achour Y, Boumezbeur A, Hadji R, Chouabbi A, Cavaleiro V, Bendaoud EA. 2017. Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arab J Geosci. 10(8):1–16. doi: 10.1007/s12517-017-2980-6.
  • Achu AL, Aju CD, Pham QB, Reghunath R, Anh DT. 2022. Landslide susceptibility modelling using hybrid bivariate statistical-based machine-learning method in a highland segment of Southern Western Ghats, India. Environ Earth Sci. 81(13):360. doi: 10.1007/s12665-022-10464-z.
  • Achu AL, Joseph S, Aju CD, Mathai J. 2021. Preliminary analysis of a catastrophic landslide event on 6 August 2020 at Pettimudi, Kerala State, India. Landslides. 18(4):1459–1463. doi: 10.1007/s10346-020-01598-x.
  • Achu AL, Thomas J, Aju CD, Remani PK, Gopinath G. 2023. Performance evaluation of machine learning and statistical techniques for modelling landslide susceptibility with limited field data. Earth Sci Inform. 16(1):1025–1039. doi: 10.1007/s12145-022-00910-8.
  • Aditian A, Kubota T, Shinohara Y. 2018. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology. 318:101–111. doi: 10.1016/j.geomorph.2018.06.006.
  • Akbar TA, Ha SR. 2011. Landslide hazard zoning along Himalayan Kaghan Valley of Pakistan—by integration of GPS, GIS, and remote sensing technology. Landslides. 8(4):527–540. doi: 10.1007/s10346-011-0260-1.
  • Arino O. 2010. GlobCover 2009.
  • Calvello M, Pecoraro G. 2018. FraneItalia: a catalog of recent Italian landslides. Geoenviron Disasters. 5(1):1–16. doi: 10.1186/s40677-018-0105-5.
  • Chen J, Chen K, Chen X, Qiu X, Huang X. 2018. Exploring shared structures and hierarchies for multiple NLP tasks. arXiv preprint arXiv:1808.07658.
  • Chen W, Shirzadi A, Shahabi H, Ahmad BB, Zhang S, Hong H, Zhang N. 2017. A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China. Geomatic Nat Hazard Risk. 8(2):1955–1977. doi: 10.1080/19475705.2017.1401560.
  • Colkesen I, Kavzoglu T. 2016. Performance evaluation of rotation forest for SVM-based recursive feature elimination using hyperspectral imagery. 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), IEEE. p. 1–5. doi: 10.1109/WHISPERS.2016.8071792.
  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen C-W, Khosravi K, Yang Y, Pham BT. 2019. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci Total Environ. 662:332–346. doi: 10.1016/j.scitotenv.2019.01.221.
  • Elliott A, Harty K. 2010. Landslide maps of Utah, Ogden 30 ‘X 60’ quadrangle: Utah Geological Survey Map 246DM, 14. p. 46 plates, scale 1: 100,000.
  • Erener A, Mutlu A, Düzgün HS. 2016. A comparative study for Landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM). Eng Geol. 203:45–55. doi: 10.1016/j.enggeo.2015.09.007.
  • Fabbri AG, Chung C-JF, Cendrero A, Remondo J. 2003. Is prediction of future landslides possible with a GIS? Natural Hazards. 30(3):487–503. doi: 10.1023/B:NHAZ.0000007282.62071.75.
  • Faes L, Wagner SK, Fu DJ, Liu X, Korot E, Ledsam JR, Back T, Chopra R, Pontikos N, Kern C, et al. 2019. Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study. Lancet Digit Health. 1(5):e232–e242. doi: 10.1016/S2589-7500(19)30108-6.
  • Felsberg A, Heyvaert Z, Poesen J, Stanley T, De Lannoy GJ. 2023. Probabilistic Hydrological Estimation of LandSlides (PHELS): global ensemble landslide hazard modelling. EGUsphere. p. 1–27.
  • Felsberg A, Poesen J, Bechtold M, Vanmaercke M, De Lannoy GJ. 2021. Estimating global landslide susceptibility and its uncertainty through ensemble modelling. Nat Hazards Earth Syst Sci Discuss. 22(9):1–30.
  • Feurer M,Hutter F. 2019. Automated Machine Learning. Cham, Switzerland: Springer. p. 3–33. Hyperparameter Optimization.
  • Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 37(12):4302–4315. doi: 10.1002/joc.5086.
  • Froude MJ, Petley DN. 2018. Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci. 18(8):2161–2181. doi: 10.5194/nhess-18-2161-2018.
  • Ghiasi G, Lin T-Y, Le QV. 2019. NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. p. 7036–7045.
  • Harris I, Jones PD, Osborn TJ, Lister DH. 2014. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int J Climatol. 34(3):623–642. doi: 10.1002/joc.3711.
  • Hartmann J, Moosdorf N. 2012. The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geochem Geophys Geosyst. 13(12):1–37. doi: 10.1029/2012GC004370.
  • He X, Wang S, Shi S, Chu X, Tang J, Liu X, Yan C, Zhang J, Ding G. 2020. Benchmarking deep learning models and automated model design for COVID-19 detection with chest CT scans. MedRxiv.
  • Hong Y, Adler R, Huffman G. 2007. Use of satellite remote sensing data in the mapping of global landslide susceptibility. Nat Hazards. 43(2):245–256. doi: 10.1007/s11069-006-9104-z.
  • Jarvis J, Reuter H, Nelson A, Guevara E. 2008. Hole-filled SRTM for the Globe, CGIAR-CSI SRTM 90m Database, Version 4. CGIAR Consort for Spatial Inf.
  • Juang CS, Stanley TA, Kirschbaum DB. 2019. Using citizen science to expand the global map of landslides: introducing the Cooperative Open Online Landslide Repository (COOLR). PLoS One. 14(7):e0218657. doi: 10.1371/journal.pone.0218657.
  • Kavzoglu T, Sahin EK, Colkesen I. 2014. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides. 11(3):425–439. doi: 10.1007/s10346-013-0391-7.
  • Khan S, Kirschbaum DB, Stanley TA, Amatya PM, Emberson RA. 2022. Global landslide forecasting system for hazard assessment and situational awareness. Front Earth Sci. 10:878996. doi: 10.3389/feart.2022.878996.
  • Li C, Yuan X, Lin C, Guo M, Wu W, Yan J, Ouyang W. 2019. AM-LFS: automl for loss function search. Proceedings of the IEEE/CVF International Conference on Computer Vision. p. 8410–8419.
  • Lin L, Lin Q, Wang Y. 2017. Landslide susceptibility mapping on a global scale using the method of logistic regression. Nat Hazards Earth Syst Sci. 17(8):1411–1424. doi: 10.5194/nhess-17-1411-2017.
  • Liu C, Chen L-C, Schroff F, Adam H, Hua W, Yuille AL, Fei-Fei L. 2019. Auto-deeplab: hierarchical neural architecture search for semantic image segmentation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. p. 82–92.
  • Luetzenburg G, Svennevig K, Bjørk AA, Keiding M, Kroon A. 2022. A national landslide inventory for Denmark. Earth Syst Sci Data. 14(7):3157–3165. doi: 10.5194/essd-14-3157-2022.
  • Mckeon C. 2016. National landslide susceptibility mapping project summary. Final Report. Geological Survey Ireland.
  • Olson RS, Moore JH. 2016. TPOT: a tree-based pipeline optimization tool for automating machine learning. Workshop on Automatic Machine Learning. PMLR. p. 66–74.
  • Osuchowski M, Atkinson R. 2008. Connecting diverse landslide inventories for improved information in Australia. Proceedings of the First World Landslide Forum, Tokyo, Japan. p. 67–70.
  • Peng YH, Peng K, Zhou J, Liu ZX. 2014. Prediction of classification of rock burst risk based on genetic algorithms with SVM. AMM. 628:383–389. doi: 10.4028/www.scientific.net/AMM.628.383.
  • Pham QB, Achour Y, Ali SA, Parvin F, Vojtek M, Vojteková J, Al-Ansari N, Achu AL, Costache R, Khedher KM, et al. 2021. A comparison among fuzzy multi-criteria decision making, bivariate, multivariate and machine learning models in landslide susceptibility mapping. Geomatics Nat Hazards Risk. 12(1):1741–1777. doi: 10.1080/19475705.2021.1944330.
  • Pradhan B,Lee S. 2010. Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling & Software. 25(6):747–759. doi:10.1016/j.envsoft.2009.10.016.
  • Rosser B, Dellow S, Haubrock S, Glassey P. 2017. New Zealand’s national landslide database. Landslides. 14(6):1949–1959. doi: 10.1007/s10346-017-0843-6.
  • Ru B, Lyle C, Schut L, Van Der Wilk M, Gal Y. 2020. Revisiting the train loss: an efficient performance estimator for neural architecture search.
  • Shahri AA, Spross J, Johansson F, Larsson S. 2019. Landslide susceptibility hazard map in southwest Sweden using artificial neural network. Catena. 183:104225. doi: 10.1016/j.catena.2019.104225.
  • Slaughter S, Burns W, Mickelson K, Jacobacci K, Biel A, Contreras T. 2017. Protocol for landslide inventory mapping from lidar data in Washington State. Washington Geological Survey, USGS. p. 1–26.
  • Snoek J, Larochelle H, Adams RP. 2012. Practical bayesian optimization of machine learning algorithms. Adv Neural Inform Process Syst. 25:2951–2959.
  • Stanley T, Kirschbaum DB. 2017. A heuristic approach to global landslide susceptibility mapping. Nat Hazards (Dordr). 87(1):145–164. doi: 10.1007/s11069-017-2757-y.
  • Stanley TA, Kirschbaum DB, Benz G, Emberson RA, Amatya PM, Medwedeff W, Clark MK. 2021. Data-driven landslide nowcasting at the global scale. Front Earth Sci. 9:640043. doi: 10.3389/feart.2021.640043.
  • Styron R, Pagani M. 2020. The GEM global active faults database. Earthquake Spectra. 36(1_suppl):160–180. doi: 10.1177/8755293020944182.
  • Swetha TV, Gopinath G. 2020. Landslides susceptibility assessment by analytical network process: a case study for Kuttiyadi river basin (Western Ghats, southern India). SN Appl Sci. 2(11):1776. doi: 10.1007/s42452-020-03574-5.
  • Taalab K, Cheng T, Zhang Y. 2018. Mapping landslide susceptibility and types using Random Forest. Big Earth Data. 2(2):159–178. doi: 10.1080/20964471.2018.1472392.
  • Thornton C, Hutter F, Hoos HH, Leyton-Brown, K. 2013. Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms, Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, United States, 2013, August
  • Tsangaratos P, Ilia I. 2016. Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size. Catena. 145:164–179. doi: 10.1016/j.catena.2016.06.004.
  • Vennari C, Salvati P, Bianchi C, Casarano D, Parise M, Basso A, Marchesini I. 2022. AReGeoDatHa: Apulian regional GeoDatabase for geo-hydrological hazards. J Environ Manage. 322:116051. doi: 10.1016/j.jenvman.2022.116051.
  • Wang Q, Li W, Xing M, Wu Y, Pei Y, Yang D, Bai H. 2016. Landslide susceptibility mapping at Gongliu county, China using artificial neural network and weight of evidence models. Geosci J. 20(5):705–718. doi: 10.1007/s12303-016-0003-3.
  • Weng Y, Zhou T, Li Y, Qiu X. 2019. Nas-unet: Neural architecture search for medical image segmentation. IEEE Access. 7:44247–44257. doi: 10.1109/ACCESS.2019.2908991.
  • Xu H, Yao L, Zhang W, Liang X, Li Z. 2019. Auto-fpn. Automatic Network Architecture Adaptation for Object Detection beyond Classification. Proceedings of the IEEE/CVF International Conference on Computer Vision. p. 6649–6658.
  • Zêzere J, Pereira S, Melo R, Oliveira S, Garcia RA. 2017. Mapping landslide susceptibility using data-driven methods. Sci Total Environ. 589:250–267. doi: 10.1016/j.scitotenv.2017.02.188.
  • Zimmer L, Lindauer M, Hutter F. 2021. Auto-PyTorch: multi-fidelity metalearning for efficient and robust AutoDL. IEEE Trans Pattern Anal Mach Intell. 43(9):3079–3090. doi: 10.1109/TPAMI.2021.3067763.